login
Triangle of coefficients in expansion of (3+5x)^n.
2

%I #13 Apr 22 2014 03:04:32

%S 1,3,5,9,30,25,27,135,225,125,81,540,1350,1500,625,243,2025,6750,

%T 11250,9375,3125,729,7290,30375,67500,84375,56250,15625,2187,25515,

%U 127575,354375,590625,590625,328125,78125,6561,87480,510300,1701000

%N Triangle of coefficients in expansion of (3+5x)^n.

%H Vincenzo Librandi, <a href="/A013622/b013622.txt">Rows n = 0..100, flattened</a>

%H Gábor Kallós, <a href="http://dx.doi.org/10.5802/ambp.211">A generalization of Pascal’s triangle using powers of base numbers</a>, Annales mathématiques Blaise Pascal, 13 no. 1 (2006), p. 1-15.

%F G.f.: 1 / (1 - x*(3+5*y)).

%e Triangle begins:

%e 1,

%e 3, 5,

%e 9, 30, 25,

%e 27, 135, 225, 125,

%e 81, 540, 1350, 1500, 625,

%e 243, 2025, 6750, 11250, 9375, 3125,

%e 729, 7290, 30375, 67500, 84375, 56250, 15625,

%e ... - _Vincenzo Librandi_, Apr 22 2014

%t Flatten[Table[Binomial[i, j] 3^(i-j) 5^j, {i, 0, 10}, {j, 0, i}]] (* _Vincenzo Librandi_, Apr 22 2014 *)

%K tabl,nonn,easy

%O 0,2

%A _N. J. A. Sloane_.