%I #57 Dec 15 2023 10:22:55
%S 1,14,105,560,2380,8568,27132,77520,203490,497420,1144066,2496144,
%T 5200300,10400600,20058300,37442160,67863915,119759850,206253075,
%U 347373600,573166440,927983760,1476337800,2310789600,3562467300,5414950296,8122425444,12033222880
%N a(n) = binomial(n,13).
%C In this sequence there are no primes. - _Artur Jasinski_, Dec 02 2007
%H T. D. Noe, <a href="/A010966/b010966.txt">Table of n, a(n) for n = 13..1000</a>
%H Milan Janjic, <a href="https://pmf.unibl.org/janjic/">Two Enumerative Functions</a> University of Banja Luka (Bosnia and Herzegovina, 2017).
%H Ângela Mestre and José Agapito, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Mestre/mestre2.html">Square Matrices Generated by Sequences of Riordan Arrays</a>, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (14, -91, 364, -1001, 2002, -3003, 3432, -3003, 2002, -1001, 364, -91, 14, -1).
%F a(n) = -A110555(n+1,13). - _Reinhard Zumkeller_, Jul 27 2005
%F a(n+12) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)/13!. - _Artur Jasinski_, Dec 02 2007; _R. J. Mathar_, Jul 07 2009
%F G.f.: x^13/(1-x)^14. - _Zerinvary Lajos_, Aug 06 2008
%F a(n) = n/(n-13) * a(n-1), n > 13. - _Vincenzo Librandi_, Mar 26 2011
%F From _Amiram Eldar_, Dec 10 2020: (Start)
%F Sum_{n>=13} 1/a(n) = 13/12.
%F Sum_{n>=13} (-1)^(n+1)/a(n) = A001787(13)*log(2) - A242091(13)/12! = 53248*log(2) - 102308323/2772 = 0.9366404415... (End)
%p seq(binomial(n,13),n=13..36); # _Zerinvary Lajos_, Aug 06 2008
%t Table[Binomial[n,13],{n,13,50}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 22 2011 *)
%o (Magma) [ Binomial(n,13): n in [13..50]]; // _Vincenzo Librandi_, Mar 26 2011
%o (PARI) for(n=13, 50, print1(binomial(n,13), ", ")) \\ _G. C. Greubel_, Aug 31 2017
%Y Cf. A000581, A001787, A110555, A242091.
%K nonn
%O 13,2
%A _N. J. A. Sloane_
%E Some formulas for different offsets rewritten by _R. J. Mathar_, Jul 07 2009