This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010923 Shallit sequence S(14,23), a(n)=[ a(n-1)^2/a(n-2)+1 ]. 1

%I

%S 14,23,38,63,105,176,296,498,838,1411,2376,4001,6738,11348,19113,

%T 32192,54221,91325,153820,259082,436377,734999,1237975,2085149,

%U 3512064,5915450,9963529,16781802,28265977,47609039

%N Shallit sequence S(14,23), a(n)=[ a(n-1)^2/a(n-2)+1 ].

%H Harvey P. Dale, <a href="/A010923/b010923.txt">Table of n, a(n) for n = 0..1000</a>

%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305.

%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

%H Jeffrey Shallit, <a href="http://www.fq.math.ca/Scanned/29-1/elementary29-1.pdf">Problem B-686</a>, Fib. Quart., 29 (1991), 85.

%t RecurrenceTable[{a[0]==14,a[1]==23,a[n]==Floor[a[n-1]^2/a[n-2]+1]},a,{n,30}] (* _Harvey P. Dale_, Jun 28 2015 *)

%Y Cf. A010922.

%K nonn

%O 0,1

%A _Simon Plouffe_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 16:08 EDT 2019. Contains 323572 sequences. (Running on oeis4.)