%I #20 Feb 05 2018 16:35:22
%S 1,-20,170,-760,1615,476,-11210,22440,1615,-64600,60002,51680,-9520,
%T -213180,-83980,803528,-379525,-692360,119700,80920,1899830,-1235360,
%U -755990,-1200040,-1981435,8388956,-361760,-5068440
%N Expansion of Product_{k>=1} (1 - x^k)^20.
%D Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H Seiichi Manyama, <a href="/A010826/b010826.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F a(0) = 1, a(n) = -(20/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017
%F G.f.: exp(-20*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018
%K sign
%O 0,2
%A _N. J. A. Sloane_.