login
A010079
Coordination sequence for net formed by holes in D_4 lattice.
1
1, 16, 104, 344, 792, 1528, 2632, 4152, 6200, 8792, 12072, 16024, 20824, 26424, 33032, 40568, 49272, 59032, 70120, 82392, 96152, 111224, 127944, 146104, 166072, 187608, 211112, 236312, 263640, 292792, 324232, 357624, 393464, 431384, 471912, 514648, 560152
OFFSET
0,2
REFERENCES
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
LINKS
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
FORMULA
a(n) = 2*(-4*(-1)^n+(3+(-1)^n)*n+6*n^3) for n>1. G.f.: -(8*x^7 -25*x^6 +2*x^5 -63*x^4 -124*x^3 -71*x^2 -14*x -1) / ((x-1)^4*(x+1)^2). - Colin Barker, Jul 07 2013
MAPLE
f := n-> if n mod 2 = 0 then 12*n^3+8*n-8 else 12*n^3+4*n+8; fi; #(for n>1).
MATHEMATICA
CoefficientList[Series[-(8 x^7 - 25 x^6 + 2 x^5 - 63 x^4 - 124 x^3 - 71 x^2 - 14 x-1)/((x - 1)^4 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 16, 104, 344, 792, 1528, 2632, 4152}, 40] (* Harvey P. Dale, Nov 08 2017 *)
CROSSREFS
Sequence in context: A210687 A000739 A186852 * A022708 A328816 A146211
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Jul 07 2013
STATUS
approved