login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009967 Powers of 23. 34

%I

%S 1,23,529,12167,279841,6436343,148035889,3404825447,78310985281,

%T 1801152661463,41426511213649,952809757913927,21914624432020321,

%U 504036361936467383,11592836324538749809,266635235464391245607,6132610415680998648961,141050039560662968926103,3244150909895248285300369,74615470927590710561908487,1716155831334586342923895201

%N Powers of 23.

%C The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 23-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011

%C Numbers n such that sigma(23*n) = 23*n + sigma(n). - _Jahangeer Kholdi_, Nov 23 2013

%H T. D. Noe, <a href="/A009967/b009967.txt">Table of n, a(n) for n = 0..100</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (23).

%F G.f.: 1/(1-23*x). - _Philippe Deléham_, Nov 23 2008

%F a(n)=23^n; a(n)=23*a(n-1) n>0 a(0)=1. - _Vincenzo Librandi_, Nov 21 2010

%t 23^Range[0,20] (* _Harvey P. Dale_, Apr 04 2011 *)

%o (Sage) [lucas_number1(n,23,0) for n in range(1, 17)]# - _Zerinvary Lajos_, Apr 29 2009

%o (MAGMA)[23^n: n in [0..100]] // _Vincenzo Librandi_, Nov 21 2010

%o (Maxima) A009967(n):=23^n$

%o makelist(A009967(n),n,0,30); /* _Martin Ettl_, Nov 07 2012 */

%o (PARI) a(n)=23^n \\ _Charles R Greathouse IV_, Sep 24 2015

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 13:36 EDT 2020. Contains 333305 sequences. (Running on oeis4.)