login
E.g.f. tan(x)*sinh(x) (even powers only).
9

%I #24 Apr 12 2017 23:09:13

%S 0,2,12,142,3192,116282,6219972,458790022,44625674352,5534347077362,

%T 852334810990332,159592488559874302,35703580441464231912,

%U 9405575479317650316842,2881823738166957609703092,1016124476854507687644180982,408525180980254462140262747872,185768439922172208338308590282722

%N E.g.f. tan(x)*sinh(x) (even powers only).

%H G. C. Greubel, <a href="/A009747/b009747.txt">Table of n, a(n) for n = 0..240</a>

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>

%F a(n) ~ (2*n)! * 4^(n+1) * sinh(Pi/2) / Pi^(2*n+1). - _Vaclav Kotesovec_, Jan 24 2015

%t nn = 20; Table[(CoefficientList[Series[Sinh[x]*Tan[x], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* _Vaclav Kotesovec_, Jan 24 2015 *)

%o (Sage) # Generalized algorithm of L. Seidel (1877)

%o def A009747_list(n) :

%o R = []; A = {-1:0, 0:0}

%o k = 0; e = 1

%o for i in range(2*n) :

%o Am = 1 if e == -1 else 0

%o A[k + e] = 0

%o e = -e

%o for j in (0..i) :

%o Am += A[k]

%o A[k] = Am

%o k += e

%o if e == -1 : R.append(A[-i//2])

%o return R

%o A009747_list(10) # _Peter Luschny_, Jun 02 2012

%o (PARI) x='x+O('x^66); v=Vec(serlaplace(tan(x)*sinh(x))); concat([0],vector(#v\2,n,v[2*n-1])) \\ _Joerg Arndt_, Apr 26 2013

%Y Bisection of A009739 and (apparently) A062161.

%K nonn

%O 0,2

%A _R. H. Hardin_

%E Extended and signs tested by _Olivier GĂ©rard_, Mar 15 1997