login
A008995
Increasing length runs of consecutive composite numbers (endpoints).
6
4, 10, 28, 96, 126, 540, 906, 1150, 1360, 9586, 15726, 19660, 31468, 156006, 360748, 370372, 492226, 1349650, 1357332, 2010880, 4652506, 17051886, 20831532, 47326912, 122164968, 189695892, 191913030
OFFSET
1,1
REFERENCES
Netnews group rec.puzzles, circa Mar 01 1996 (I would like to get the exact reference).
LINKS
MathForum rec.puzzles archive, Arithmetic Question 8 - consecutive.composites, June 2005.
User "Abigail", 1000 consectutive composites (sic), post in newsgroup rec.puzzles, Jun 19 1996.
Eric Weisstein's World of Mathematics, Prime Gaps.
FORMULA
a(n) = A000101(n+1)-1.
MATHEMATICA
maxGap = 1; Reap[ Do[ gap = Prime[n + 1] - (p = Prime[n]); If[gap > maxGap, Print[p + gap - 1]; Sow[p + gap - 1]; maxGap = gap], {n, 2, 10^8}]][[2, 1]] (* Jean-François Alcover, Jun 12 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mark Cramer (m.cramer(AT)qut.edu.au). Computed by Dennis Yelle (dennis(AT)netcom.com).
STATUS
approved