

A008995


Increasing length runs of consecutive composite numbers (endpoints).


7



4, 10, 28, 96, 126, 540, 906, 1150, 1360, 9586, 15726, 19660, 31468, 156006, 360748, 370372, 492226, 1349650, 1357332, 2010880, 4652506, 17051886, 20831532, 47326912, 122164968, 189695892, 191913030
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Netnews group rec.puzzles, circa Mar 01 1996 (I would like to get the exact reference).


LINKS

Table of n, a(n) for n=1..27.
The rec.puzzles archive, Arithmetic Question 8  consecutive.composites, The Math Forum
Usenet rec.puzzles Archive, Consecutive Composites, June 2005
Usenet rec.puzzles Archive, Cons. Comp. Solution, June 2005
Eric Weisstein's World of Mathematics, Prime Gaps.


MATHEMATICA

maxGap = 1; Reap[ Do[ gap = Prime[n + 1]  (p = Prime[n]); If[gap > maxGap, Print[p + gap  1]; Sow[p + gap  1]; maxGap = gap], {n, 2, 10^8}]][[2, 1]] (* JeanFrançois Alcover, Jun 12 2013 *)


CROSSREFS

Cf. A008950, A008996. Also A008995(n) = A000101(n+1)1.
Sequence in context: A061639 A243600 A239577 * A111236 A164361 A006907
Adjacent sequences: A008992 A008993 A008994 * A008996 A008997 A008998


KEYWORD

nonn


AUTHOR

Mark Cramer (m.cramer(AT)qut.edu.au). Computed by Dennis Yelle (dennis(AT)netcom.com).


STATUS

approved



