This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008515 5-dimensional centered cube numbers. 3
 1, 33, 275, 1267, 4149, 10901, 24583, 49575, 91817, 159049, 261051, 409883, 620125, 909117, 1297199, 1807951, 2468433, 3309425, 4365667, 5676099, 7284101, 9237733, 11589975, 14398967, 17728249, 21647001, 26230283, 31559275, 37721517, 44811149, 52929151, 62183583, 72689825, 84570817, 97957299, 112988051, 129810133, 148579125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These are never prime, as a(n) = (2n+1)*(n^4+2*n^3+4*n^2+3*n+1). - Jonathan Vos Post, Aug 18 2011 zeta(5) = 1 / (a(1) - 1^10 / (a(2) - 2^10 / (a(3) - 3^10 / ... ))) [From Tito Piezas III mathoverflow question 265688 comment]. - Michael Somos, Jul 06 2017 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Tito Piezas, About a Ramanjuan-Sata formula of level 10, a recurrence, and zeta(5)?, Mathoverflow question asked Mar 27 2017. Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n) = n^5+(n+1)^5 = 2*n^5+5*n^4+10*n^3+10*n^2+5*n+1. From Bruno Berselli, Aug 25 2011:  (Start) G.f.: (1+x)*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^6. a(n) = -a(-n-1) = +6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6).  (End) MAPLE n^5+(n+1)^5; PROG (PARI) a(n) = n^5+(n+1)^5; (MAGMA) [n^5+(n+1)^5: n in [0..37]];  // Bruno Berselli, Aug 25 2011 CROSSREFS Apart from the first term, a subsequence of A088703. Sequence in context: A119782 A252978 A268264 * A179995 A000539 A023874 Adjacent sequences:  A008512 A008513 A008514 * A008516 A008517 A008518 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 19:37 EDT 2019. Contains 328373 sequences. (Running on oeis4.)