The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007800 From a problem in AI planning: a(n) = 4+a(n-1)+a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-6)-a(n-7), n>7. 3
 1, 2, 4, 8, 16, 31, 59, 111, 207, 384, 710, 1310, 2414, 4445, 8181, 15053, 27693, 50942, 93704, 172356, 317020, 583099, 1072495, 1972635, 3628251, 6673404, 12274314, 22575994, 41523738, 76374073, 140473833, 258371673, 475219609, 874065146 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The number of length n binary words with fewer than 3 zeros between any pair of consecutive ones. - Jeffrey Liese, Dec 23 2010 LINKS Robert Israel, Table of n, a(n) for n = 1..3397 T. Langley, J. Liese, J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order , J. Int. Seq. 14 (2011) # 11.4.2 Index entries for linear recurrences with constant coefficients, signature (3,-2,0,-1,1). FORMULA a(1)=1, a(2)=2, a(3)=4, a(4)=8, a(5)=16, a(n)=3*a(n-1)-2*a(n-2)+0*a(n-3)- a(n-4)+ a(n-5). - Harvey P. Dale, Apr 24 2013 G.f.: -x*(x^4-x+1) / ((x-1)^2*(x^3+x^2+x-1)). - Colin Barker, Aug 18 2014 2*a(n) = A001590(n+4)-n. - R. J. Mathar, Aug 16 2017 MAPLE for n from 1 to 5 do a[n]:= [1, 2, 4, 8, 16][n] od: for n from 6 to 100 do a[n]:= 3*a[n-1]-2*a[n-2]-a[n-4]+a[n-5] od: seq(a[n], n=1..100); # Robert Israel, Aug 19 2014 MATHEMATICA LinearRecurrence[{3, -2, 0, -1, 1}, {1, 2, 4, 8, 16}, 40] (* Harvey P. Dale, Apr 24 2013 *) PROG (PARI) Vec(-x*(x^4-x+1)/((x-1)^2*(x^3+x^2+x-1)) + O(x^100)) \\ Colin Barker, Aug 18 2014 CROSSREFS Cf. A062544. Sequence in context: A106399 A334636 A299026 * A309982 A102726 A188900 Adjacent sequences:  A007797 A007798 A007799 * A007801 A007802 A007803 KEYWORD nonn,easy AUTHOR Peter Jonsson [ petej(AT)ida.liu.se ] STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 12:47 EDT 2022. Contains 355148 sequences. (Running on oeis4.)