login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007800 From a problem in AI planning: a(n) = 4+a(n-1)+a(n-2)+a(n-3)+a(n-4)-a(n-5)-a(n-6)-a(n-7), n>7. 3
1, 2, 4, 8, 16, 31, 59, 111, 207, 384, 710, 1310, 2414, 4445, 8181, 15053, 27693, 50942, 93704, 172356, 317020, 583099, 1072495, 1972635, 3628251, 6673404, 12274314, 22575994, 41523738, 76374073, 140473833, 258371673, 475219609, 874065146 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The number of length n binary words with fewer than 3 zeros between any pair of consecutive ones. - Jeffrey Liese, Dec 23 2010

LINKS

Robert Israel, Table of n, a(n) for n = 1..3397

T. Langley, J. Liese, J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order , J. Int. Seq. 14 (2011) # 11.4.2

Index entries for linear recurrences with constant coefficients, signature (3,-2,0,-1,1).

FORMULA

a(1)=1, a(2)=2, a(3)=4, a(4)=8, a(5)=16, a(n)=3*a(n-1)-2*a(n-2)+0*a(n-3)- a(n-4)+ a(n-5). - Harvey P. Dale, Apr 24 2013

G.f.: -x*(x^4-x+1) / ((x-1)^2*(x^3+x^2+x-1)). - Colin Barker, Aug 18 2014

2*a(n) = A001590(n+4)-n. - R. J. Mathar, Aug 16 2017

MAPLE

for n from 1 to 5 do a[n]:= [1, 2, 4, 8, 16][n] od:

for n from 6 to 100 do a[n]:= 3*a[n-1]-2*a[n-2]-a[n-4]+a[n-5] od:

seq(a[n], n=1..100); # Robert Israel, Aug 19 2014

MATHEMATICA

LinearRecurrence[{3, -2, 0, -1, 1}, {1, 2, 4, 8, 16}, 40] (* Harvey P. Dale, Apr 24 2013 *)

PROG

(PARI) Vec(-x*(x^4-x+1)/((x-1)^2*(x^3+x^2+x-1)) + O(x^100)) \\ Colin Barker, Aug 18 2014

CROSSREFS

Cf. A062544.

Sequence in context: A174439 A000128 A106399 * A102726 A188900 A189075

Adjacent sequences:  A007797 A007798 A007799 * A007801 A007802 A007803

KEYWORD

nonn,easy

AUTHOR

Peter Jonsson [ petej(AT)ida.liu.se ]

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 05:42 EDT 2017. Contains 293601 sequences.