The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007706 a(n) = 1 + coefficient of x^n in Product_{k>=1} (1-x^k) (essentially the expansion of the Dedekind function eta(x)). (Formerly M0013) 3
 2, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825. B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825. FORMULA eta(z) = q^(1/24) Product_{m>=1} (1-q^m), q=exp(2 Pi i z). G.f.: 1/(1-x) + Product_{k>0} (1-x^k). - Michael Somos, Jun 26 2004 MAPLE eta := q^(1/24)*mul( (1-q^m), m=1..100); MATHEMATICA p[n_] := p[n] = Expand[p[n-1]*(1-x^n)]; p[1] = 1-x; a[n_] := 1+Coefficient[p[n], x^n]; a[0] = 2; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jan 06 2012 *) 1 + CoefficientList[QPochhammer[q] + O[q]^120, q] (* Jean-François Alcover, Nov 24 2015 *) PROG (PARI) a(n)=if(n<0, 0, 1+polcoeff(eta(x+x*O(x^n)), n)) /* Michael Somos, Jun 26 2004 */ CROSSREFS Cf. A010815. Sequence in context: A039977 A197548 A029403 * A241069 A261084 A035144 Adjacent sequences:  A007703 A007704 A007705 * A007707 A007708 A007709 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane, Sep 19 1994 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 05:20 EDT 2020. Contains 334837 sequences. (Running on oeis4.)