login
A007706
a(n) = 1 + coefficient of x^n in Product_{k>=1} (1-x^k) (essentially the expansion of the Dedekind function eta(x)).
(Formerly M0013)
4
2, 0, 0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
0,1
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
FORMULA
eta(z) = q^(1/24) Product_{m>=1} (1-q^m), q=exp(2 Pi i z).
G.f.: 1/(1-x) + Product_{k>0} (1-x^k). - Michael Somos, Jun 26 2004
MAPLE
eta := q^(1/24)*mul( (1-q^m), m=1..100);
MATHEMATICA
p[n_] := p[n] = Expand[p[n-1]*(1-x^n)]; p[1] = 1-x; a[n_] := 1+Coefficient[p[n], x^n]; a[0] = 2; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jan 06 2012 *)
1 + CoefficientList[QPochhammer[q] + O[q]^120, q] (* Jean-François Alcover, Nov 24 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, 1+polcoeff(eta(x+x*O(x^n)), n)) /* Michael Somos, Jun 26 2004 */
CROSSREFS
Cf. A010815.
Sequence in context: A039977 A197548 A029403 * A241069 A261084 A035144
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Sep 19 1994
STATUS
approved