The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007678 Number of regions in regular n-gon with all diagonals drawn.
(Formerly M3411)
143

%I M3411 #142 Jun 24 2023 12:43:49

%S 0,0,1,4,11,24,50,80,154,220,375,444,781,952,1456,1696,2500,2466,4029,

%T 4500,6175,6820,9086,9024,12926,13988,17875,19180,24129,21480,31900,

%U 33856,41416,43792,52921,52956,66675,69996,82954,86800,102050

%N Number of regions in regular n-gon with all diagonals drawn.

%C This sequence and A006533 are two equivalent ways of presenting the same sequence.

%C A quasipolynomial of order 2520. - _Charles R Greathouse IV_, Jan 15 2013

%C Also the circuit rank of the n-polygon diagonal intersection graph. - _Eric W. Weisstein_, Mar 08 2018

%C This sequence only counts polygons, in contrast to A006533, which also counts the n segments of the circumscribed circle delimited by the edges of the regular n-gon. Therefore, a(n) = A006533(n) - n. See also A006561 which counts the number of intersection points, and A350000 which considers iterated "cutting along diagonals". - _M. F. Hasler_, Dec 13 2021

%C The Petrie polygon orthographic projection of a regular n-simplex is a regular (n+1)-gon with all diagonals drawn. Hence a(n+1) is the number of regions in the Petrie polygon of a regular n-simplex. - _Mohammed Yaseen_, Nov 05 2022

%D Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.

%D C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A007678/b007678.txt">Table of n, a(n) for n = 1..1000</a>

%H Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/rose_5.pdf">Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids</a>, (2020). Also arXiv:2009.07918.

%H Robert Dougherty-Bliss, <a href="https://gist.github.com/rwbogl/e0c6e2ba5e901188497131ac11a88f2e">First draft of Python program to produce colored drawings of these figures</a>, Github, Feb 09 2020.

%H M. Griffiths, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths2/griffiths.html">Counting the regions in a regular drawing of K_{n,n}</a>, J. Int. Seq. 13 (2010) # 10.8.5.

%H M. F. Hasler, <a href="/A006561/a006561.html">Interactive illustration of A006561(n) & A006533(n)</a>; <a href="/A006533/a006533.png">colored version for n=6</a> <a href="/A006533/a006533_1.png">and for n=8</a>.

%H Sascha Kurz, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/drawing/drawing.html">m-gons in regular n-gons</a> (in German).

%H J. Meeus & N. J. A. Sloane, <a href="/A006532/a006532_1.pdf">Correspondence, 1974-1975</a>

%H B. Poonen and M. Rubinstein, <a href="https://doi.org/10.1137/S0895480195281246">The Number of Intersection Points Made by the Diagonals of a Regular Polygon</a>, SIAM J. Discrete Mathematics 11, no. 1 (1998), pp. 135-156; DOI:10.1137/S0895480195281246. [<a href="http://math.mit.edu/~poonen/papers/ngon.pdf">Author's copy</a>]. The latest arXiv version <a href="http://arxiv.org/abs/math/9508209">arXiv:math/9508209</a> has corrected some typos in the published version.

%H B. Poonen and M. Rubinstein, <a href="http://math.mit.edu/~poonen/papers/ngon.m">Mathematica programs for these sequences</a>

%H J. F. Rigby, <a href="https://doi.org/10.1007/BF00147438">Multiple intersections of diagonals of regular polygons, and related topics</a>, Geom. Dedicata 9 (1980), 207-238.

%H M. Rubinstein, <a href="/A006561/a006561_3.pdf">Drawings for n=4,5,6,...</a>

%H Scott R. Shannon, <a href="/A007678/a007678.png">Colored illustration for n = 17</a>

%H Scott R. Shannon, <a href="/A007678/a007678_1.png">Colored illustration for n = 18</a>

%H Scott R. Shannon, <a href="/A007678/a007678_2.png">Colored illustration for n = 19</a>

%H Scott R. Shannon, <a href="/A007678/a007678_3.png">Colored illustration for n = 23</a>

%H Scott R. Shannon, <a href="/A007678/a007678_4.png">Colored illustration for n = 27</a>

%H Scott R. Shannon, <a href="/A007678/a007678_6.png">Colored illustration for n = 40</a>

%H Scott R. Shannon, <a href="/A007678/a007678_7.png">Colored illustration for n = 41 (1st version)</a>

%H Scott R. Shannon, <a href="/A007678/a007678_8.png">Colored illustration for n = 41 (2nd version)</a>

%H Scott R. Shannon, <a href="/A007678/a007678_9.png">Colored illustration for n = 41 (3rd version)</a>. This variation has coloring based on the number of edges of the polygon: red = 3-gon, orange = 4-gon, yellow = 5-gon, light-green = 6-gon etc.

%H N. J. A. Sloane (in collaboration with Scott R. Shannon), <a href="/A331452/a331452.pdf">Art and Sequences</a>, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.

%H N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 18.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CircuitRank.html">Circuit Rank</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygonDiagonalIntersectionGraph.html">Polygon Diagonal Intersection Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RegularPolygonDivisionbyDiagonals.html">Regular Polygon Division by Diagonals</a>

%H <a href="/index/Pol#Poonen">Sequences formed by drawing all diagonals in regular polygon</a>

%H <a href="/index/Ch#CHORD">Sequences related to chord diagrams</a>

%F For odd n > 3, a(n) = sumstep {i=5, n, 2, (i-2)*floor(n/2)+(i-4)*ceiling(n/2)+1} + x*(x+1)*(2*x+1)/6*n), where x = (n-5)/2. Simplifying the floor/ceiling components gives the PARI code below. - _Jon Perry_, Jul 08 2003

%F For odd n, a(n) = (24 - 42*n + 23*n^2 - 6*n^3 + n^4)/24. - _Graeme McRae_, Dec 24 2004

%F a(n) = A006533(n) - n. - _T. D. Noe_, Dec 23 2006

%F For odd n, binomial transform of [1, 10, 29, 36, 16, 0, 0, 0, ...] = [1, 11, 50, 154, ...]. - _Gary W. Adamson_, Aug 02 2011

%F a(n) = A135565(n) - A007569(n) + 1. - _Max Alekseyev_

%F See the Mma code in A006533 for the explicit Poonen-Rubenstein formula that holds for all n. - _N. J. A. Sloane_, Jan 23 2020

%t del[m_,n_]:=If[Mod[n,m]==0,1,0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2,n](-5n^3+42n^2-40n-48)/48 - del[4,n](3n/4) + del[6,n](-53n^2+310n)/12 + del[12,n](49n/2) + del[18,n]*32n + del[24,n]*19n - del[30,n]*36n - del[42,n]*50n - del[60,n]*190n - del[84,n]*78n - del[90,n]*48n - del[120,n]*78n - del[210,n]*48n]; Table[R[n], {n,1,1000}] (* _T. D. Noe_, Dec 21 2006 *)

%o (PARI) /* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr,x,fn,cn,fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0,nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ _Jon Perry_, Jul 08 2003

%o (PARI) apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ _M. F. Hasler_, Aug 06 2021

%o (Python)

%o def d(n,m): return not n % m

%o def A007678(n): return (1176*d(n,12)*n - 3744*d(n,120)*n + 1536*d(n,18)*n - d(n,2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n,210)*n + 912*d(n,24)*n - 1728*d(n,30)*n - 36*d(n,4)*n - 2400*d(n,42)*n - 4*d(n,6)*n*(53*n - 310) - 9120*d(n,60)*n - 3744*d(n,84)*n - 2304*d(n,90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # _Chai Wah Wu_, Mar 08 2021

%Y Cf. A001006, A054726, A006533, A006561, A006600, A007569 (number of vertices), A006522, A135565 (number of line segments).

%Y A062361 gives number of triangles, A331450 and A331451 give distribution of polygons by number of sides.

%Y A333654, A335614, A335646, A337330 give the number of internal n-gon to k-gon contacts for n>=3, k>=n.

%Y A187781 gives number of distinct regions.

%K nonn,nice

%O 1,4

%A _N. J. A. Sloane_, Bjorn Poonen (poonen(AT)math.princeton.edu)

%E More terms from _Graeme McRae_, Dec 26 2004

%E a(1) = a(2) = 0 prepended by _Max Alekseyev_, Dec 01 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 14:28 EDT 2024. Contains 372519 sequences. (Running on oeis4.)