%I M0765 #28 Jul 05 2023 17:05:26
%S 1,1,2,3,6,10,19,33,60,104,184,316,548
%N Dimension of space of Vassiliev knot invariants of order n.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Dror Bar-Natan, <a href="https://doi.org/10.1016/0040-9383(95)93237-2">On the Vassiliev Knot Invariants</a>, Topology 34 (1995) 423-472.
%H Dror Bar-Natan, <a href="http://www.math.toronto.edu/~drorbn/VasBib/VasBib.html">Bibliography of Vassiliev Invariants</a>
%H D. J. Broadhurst, <a href="http://arXiv.org/abs/q-alg/9709031">Conjectured enumeration of Vassiliev invariants</a>, arXiv:q-alg/9709031, 1997.
%H Maksim Karev, <a href="https://arxiv.org/abs/2307.00468">On the primitive subspace of Lando framed graph bialgebra</a>, arXiv:2307.00468 [math.CO], 2023.
%H Jan Kneissler, <a href="http://arxiv.org/abs/q-alg/9706022">The number of primitive Vassiliev invariants of degree up to 12</a>, arXiv:q-alg/9706022, 1997.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/VassilievInvariant.html">Vassiliev Invariant.</a>
%H <a href="/index/K#knots">Index entries for sequences related to knots</a>
%F G.f.: Product_{ m >= 1 } (1-y^m)^(-A007478(m)). - _Andrey Zabolotskiy_, Sep 19 2017
%F Broadhurst gives a conjectured explicit g.f. (different from A014595).
%Y Cf. A007293 (first differences), A007478, A014595 (conjectured continuation).
%K hard,nonn,nice
%O 0,3
%A _N. J. A. Sloane_
%E Description corrected by _Sergei Duzhin_, Aug 29 2000