login
Number of labeled trivalent (or cubic) 3-connected graphs with 2n nodes.
(Formerly M5343)
2

%I M5343 #14 Mar 16 2018 20:12:09

%S 1,70,16800,9238320,9520156800,16305064776000,42856575521760000,

%T 163329351308323200000,864876880105205071104000,

%U 6155146233167046820024320000,57316399761348433188962519040000

%N Number of labeled trivalent (or cubic) 3-connected graphs with 2n nodes.

%D R. W. Robinson, personal communication.

%D R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H R. W. Robinson, <a href="/A007100/b007100.txt">Table of n, a(n) for n = 2..28</a>

%H R. W. Robinson, <a href="/A002829/a002829.pdf">Cubic labeled graphs, computer print-out, n.d.</a> (see last page)

%F a(n) = (2*n)!*r(n)/(3*n*2^n) where r(2) = 1 and r(n) = (3*n-2) * (r(n-1) + Sum_{i=2..n-2} r(i) * r(n-i)). - _Sean A. Irvine_, Oct 11 2017

%K nonn

%O 2,2

%A _N. J. A. Sloane_.