OFFSET
1,1
COMMENTS
Pseudoprimes for the primality test from [Schick]: n odd is probably prime if (n-1) | A003558((n-1)/2). (Succeeds for 99.9975% of odd natural numbers less than 10^8.) - Jonathan Skowera, Jun 29 2013
Equivalently, these are composites n such that ((n-1)/2)^((n-1)/2) == +-1 (mod n). - Thomas Ordowski, Nov 28 2023
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A12.
C. Schick, Weiche Primzahlen und das 257-Eck, 2008, pages 140-146.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1231 from T. D. Noe)
Eric Weisstein's World of Mathematics, Euler Pseudoprime.
MATHEMATICA
ok[_?PrimeQ] = False; ok[n_] := (p = PowerMod[2, (n - 1)/2, n]; p == Mod[1, n] || p == Mod[-1, n]); Select[2 Range[22000] + 1, ok] (* Jean-François Alcover, Apr 06 2011 *)
PROG
(PARI) isok(n) = {if (!isprime(n) && (n%2), npm = Mod(2, n)^((n-1)/2); if ((npm == Mod(1, n)) || (npm == Mod(-1, n)), print1(n, ", ")); ); } \\ Michel Marcus, Sep 12 2015
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
a(15) corrected (to 10261 from 10241) by Faron Moller (fm(AT)csd.uu.se)
Name edited by Thomas Ordowski, Nov 28 2023
STATUS
approved