login
A006970
Euler pseudoprimes: composite numbers n such that 2^((n-1)/2) == +-1 (mod n).
(Formerly M5442)
29
341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585, 12801, 15709, 15841, 16705, 18705, 25761, 29341, 30121, 31621, 33153, 34945, 41041, 42799
OFFSET
1,1
COMMENTS
Pseudoprimes for the primality test from [Schick]: n odd is probably prime if (n-1) | A003558((n-1)/2). (Succeeds for 99.9975% of odd natural numbers less than 10^8.) - Jonathan Skowera, Jun 29 2013
Equivalently, these are composites n such that ((n-1)/2)^((n-1)/2) == +-1 (mod n). - Thomas Ordowski, Nov 28 2023
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A12.
C. Schick, Weiche Primzahlen und das 257-Eck, 2008, pages 140-146.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1231 from T. D. Noe)
Eric Weisstein's World of Mathematics, Euler Pseudoprime.
MATHEMATICA
ok[_?PrimeQ] = False; ok[n_] := (p = PowerMod[2, (n - 1)/2, n]; p == Mod[1, n] || p == Mod[-1, n]); Select[2 Range[22000] + 1, ok] (* Jean-François Alcover, Apr 06 2011 *)
PROG
(PARI) isok(n) = {if (!isprime(n) && (n%2), npm = Mod(2, n)^((n-1)/2); if ((npm == Mod(1, n)) || (npm == Mod(-1, n)), print1(n, ", ")); ); } \\ Michel Marcus, Sep 12 2015
CROSSREFS
Sequence in context: A210993 A346567 A328691 * A007011 A064907 A043685
KEYWORD
nonn,nice
EXTENSIONS
a(15) corrected (to 10261 from 10241) by Faron Moller (fm(AT)csd.uu.se)
Name edited by Thomas Ordowski, Nov 28 2023
STATUS
approved