

A006814


Related to selfavoiding walks on square lattice.
(Formerly M4145)


3



1, 6, 21, 76, 249, 814, 2521, 7824, 23473, 70590, 207345, 610356, 1765959, 511006, 14643993, 41958852, 118976633, 337823486, 951157365, 2681163492, 7505218171, 21030311474
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

After constructing a selfavoiding walk, bridge together all adjacent neighboring sites on the walk. Then imagine a current flowing through the resulting structure. This sequence is the sum of the number of links carrying the full current across all walks of length n.  Sean A. Irvine, Aug 08 2017


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..22.
A. J. Guttmann and J. Wang, The extension of selfavoiding random walk series in 2 dimensions, Preprint. (Annotated scanned copy)
S. S. Manna, A. J. Guttmann and A. K. Roy, Diffusion on selfavoiding walk networks, J. Phys. A 22 (1989), 36213627.


CROSSREFS

Cf. A006815, A006816.
Sequence in context: A200249 A207097 A027281 * A108136 A054625 A192733
Adjacent sequences: A006811 A006812 A006813 * A006815 A006816 A006817


KEYWORD

nonn,walk


AUTHOR

N. J. A. Sloane


EXTENSIONS

a(19)a(22) from Sean A. Irvine, Aug 08 2017


STATUS

approved



