OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Jensen, Table of n, a(n) for n = 0..82 (from link below)
I. G. Enting, A, J. Guttmann and I. Jensen, Low-Temperature Series Expansions for the Spin-1 Ising Model, arXiv:hep-lat/9410005, 1994; J. Phys. A. 27 (1994) 6987-7006.
J. W. Essam, A. J. Guttmann and K. De'Bell, On two-dimensional directed percolation, J. Phys. A 21 (1988), 3815-3832.
I. Jensen, More terms
Iwan Jensen, Anthony J. Guttmann, Series expansions of the percolation probability for directed square and honeycomb lattices, arXiv:cond-mat/9509121, 1995; J. Phys. A 28 (1995), no. 17, 4813-4833.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved