login
Number of stable forests with n nodes.
(Formerly M0702)
3

%I M0702 #24 Aug 10 2017 18:27:22

%S 1,1,2,3,5,8,15,27,54,110,238,526,1211,2839,6825,16655,41315,103663,

%T 263086,673604,1739155,4521632,11831735,31134338,82352098,218837877,

%U 584018065,1564679863,4207224730,11350583175,30718054693,83373960954,226907180850,619118327796

%N Number of stable forests with n nodes.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A006544/b006544.txt">Table of n, a(n) for n = 0..1000</a>

%H K. L. McAvaney, <a href="http://dx.doi.org/10.1007/BFb0057379">Counting stable trees</a>, pp. 79-85 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.

%H K. L. McAvaney, <a href="/A006544/a006544.pdf">Letter to N. J. A. Sloane, May 1975</a>

%F G.f.: Sum_{n>=1} Z(S_n,s(x)) where s(x) is the g.f. for A003426 and Z(S_n) is the cycle index of the symmetric group on n elements. - _Sean A. Irvine_, Feb 13 2016

%Y Cf. A006545, A003426, A003427, A003428, A003429.

%K nonn

%O 0,3

%A _N. J. A. Sloane_.

%E More terms from _Sean A. Irvine_, Feb 13 2016