login
a(n) = norm of Heilbronn sum NH_{p}, with p = prime(n).
(Formerly M5366)
1

%I M5366 #26 Mar 06 2017 03:30:26

%S -1,-1,97,-243,12167,577,221874931,157112485811,-2480435158303,

%T 310695313260929,-51140551819476687829,2727257042363914863401,

%U -2572343484535669027372727,1052824394331287344099620777449

%N a(n) = norm of Heilbronn sum NH_{p}, with p = prime(n).

%C Also, coefficients of period polynomials.

%D D. H. and Emma Lehmer, Cyclotomy for nonsquarefree moduli, pp. 276-300 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Sean A. Irvine, <a href="/A006310/b006310.txt">Table of n, a(n) for n = 1..61</a>

%H W. L. Fouché, <a href="http://dx.doi.org/10.1016/0022-314X(84)90088-X">Arithmetic properties of Heilbronn sums</a>, J. Number Theory, 19 (1984), 1-6.

%H Ken Yamamura, <a href="http://dx.doi.org/10.3792/pjaa.71.22">A table of absolute norms of Heilbronn sums</a>, Proc. Japan Acad. Ser. A Math. Sci., Volume 71, Number 1 (1995), 22-23.

%K sign

%O 1,3

%A _N. J. A. Sloane_

%E Entry revised by _N. J. A. Sloane_, Aug 10 2003

%E Name corrected by _Michel Marcus_, Mar 26 2015