%I M4211 #16 Feb 01 2018 21:09:56
%S 1,1,6,31,806,20306,2558556,320327931,200525284806,125368356709806,
%T 391901483074853556,1224770494838892134806,19138263752352528498478556
%N Gaussian binomial coefficient [ n,n/2 ] for q=5.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Vincenzo Librandi, <a href="/A006115/b006115.txt">Table of n, a(n) for n = 0..75</a>
%H M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
%t Table[QBinomial[n, Floor[n/2], 5], {n, 0, 20}] (* _Vincenzo Librandi_, Aug 13 2016 *)
%K nonn
%O 0,3
%A _N. J. A. Sloane_