

A005865


The codingtheoretic function A(n,6).
(Formerly M0240)


3



1, 1, 1, 1, 1, 2, 2, 2, 4, 6, 12, 24, 32, 64, 128, 256
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Since A(n,5) = A(n+1,6), A(n,5) gives essentially the same sequence.
The next term is known only to be in the range 258340.  Moshe Milshtein, Apr 24 2019


REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", SpringerVerlag, p. 248.
F. J. MacWilliams and N. J. A. Sloane, The Theory of ErrorCorrecting Codes, ElsevierNorth Holland, 1978, p. 674.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..16.
A. E. Brouwer, Tables of general binary codes
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, New table of constant weight codes, IEEE Trans. Info. Theory 36 (1990), 13341380.
M. Grassl, Bounds on the minimum distance of linear codes
Moshe Milshtein, A new twoerrorcorrecting binary code of length 16, Cryptography and Communications (2019).
Eric Weisstein's World of Mathematics, ErrorCorrecting Code.
Index entries for sequences related to A(n,d)


CROSSREFS

Cf. A005864, A005866, A169761, A169762.
Sequence in context: A185030 A063823 A182027 * A176051 A245257 A153988
Adjacent sequences: A005862 A005863 A005864 * A005866 A005867 A005868


KEYWORD

nonn,hard,nice


AUTHOR

N. J. A. Sloane.


STATUS

approved



