login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005805
Number of phylogenetic trees with n labels.
(Formerly M1519)
3
1, 2, 5, 18, 107, 1008, 13113, 214238, 4182487, 94747196, 2440784645, 70431957258, 2249856084803, 78802876705608, 3002702793753489, 123649410977736950, 5471808106109912815, 258948617502187143188, 13049542794706527317597, 697673361673877090147490
OFFSET
1,2
COMMENTS
Stirling transform of [ 1, 1, 1, 4, 26, 236, ... ] = A000311(n-1).
Series-reduced trees where each leaf is a nonempty subset of the set of n labels. [Christian G. Bower, Dec 15 1999]
REFERENCES
Foulds, L. R.; Robinson, R. W. Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..381 (first 100 terms from Vincenzo Librandi)
N. J. A. Sloane, Transforms
FORMULA
From Vaclav Kotesovec, Nov 16 2021: (Start)
E.g.f.: exp(2*x)/4 - (1 + LambertW(-exp(exp(x)/2 - 1)/2))^2.
a(n) ~ 2 * log(2)^(3/2) * n^(n-2) / (exp(n) * (log(2) + log(log(2)))^(n - 3/2)).
(End)
MAPLE
stirtr:= proc(p) proc(n) add(p(k) *Stirling2(n, k), k=0..n) end end: b:= proc(n) option remember; if n<=1 then n elif n=2 then 1 else (n+1) *b(n-1) +2*add(binomial(n-1, k) *b(k) *b(n-k), k=2..n-2) fi end:
a:= stirtr(n->`if`(n<2, 1, b(n-1))):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 15 2008
MATHEMATICA
max = 18; a311 = CoefficientList[ InverseSeries[ Series[ 1 + 2x - E^x, {x, 0, max}], x], x]*Range[0, max]!; b[1] = 1; b[k_] := a311[[k]]; a[n_] := Sum[ b[k]*StirlingS2[n, k], {k, 1, n}]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 22 2012 *)
CROSSREFS
Sequence in context: A304918 A007769 A174122 * A058338 A006896 A125625
KEYWORD
nonn,easy
EXTENSIONS
More terms from Christian G. Bower, Dec 15 1999
STATUS
approved