%I #13 Jun 12 2016 02:47:48
%S 0,1,2,6,24,119,711,4981,39903,359537,3598696,39615626,475687487,
%T 6187239476,86661001741,1300430722200,20814114415224,353948328666101,
%U 6372804626194310,121112786592293964,2422786846761133394,50888617325509644404,1119751494628234263303
%N Leading term of Stirling's approximation to n!, sqrt(2*Pi)*n^(n+(1/2))/e^n, rounded up.
%H G. C. Greubel, <a href="/A005395/b005395.txt">Table of n, a(n) for n = 0..150</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Stirling%27s_approximation">Stirling's Approximation</a>
%F a(n) = ceiling(sqrt(2*Pi)*n^(n+(1/2))/e^n). - _Wesley Ivan Hurt_, Jun 11 2016
%p A005395:=n->ceil(sqrt(2*Pi)*n^(n+(1/2))/exp(1)^n): seq(A005395(n), n=0..30); # _Wesley Ivan Hurt_, Jun 11 2016
%t Table[Ceiling[Sqrt[2*Pi]*n^(n + (1/2))/E^n], {n, 0, 20}] (* _Wesley Ivan Hurt_, Jun 11 2016 *)
%Y Cf. (rounded down) A005393.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_
%E a(12) onwards corrected by _Sean A. Irvine_, Jun 11 2016