

A005244


A selfgenerating sequence: start with 2 and 3, take all products of any 2 previous elements, subtract 1 and adjoin them to the sequence.
(Formerly M0704)


6



2, 3, 5, 9, 14, 17, 26, 27, 33, 41, 44, 50, 51, 53, 65, 69, 77, 80, 81, 84, 87, 98, 99, 101, 105, 122, 125, 129, 131, 134, 137, 149, 152, 153, 158, 159, 161, 164, 167, 173, 194, 195, 197, 201, 204, 206, 209, 219, 230, 233, 237, 239, 242, 243, 249
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n)=A139127(n)*a(k)1 for some k; A139128 gives number of distinct representations a(n)=a(i)*a(j)1.  Reinhard Zumkeller, Apr 09 2008
Complement of A171413. [From Jaroslav Krizek, Dec 08 2009]


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, E31.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Hofstadter Sequences.


EXAMPLE

17 is present because it equals 2*91.


MATHEMATICA

f[s_, mx_] := Union[s, Select[Apply[Times, Subsets[s, {2}], {1}]  1, # <= mx &]]; mx = 250; FixedPoint[f[#, mx] &, {2, 3}] (* From JeanFrançois Alcover , Mar 29 2011 *)


PROG

(Haskell)
import Data.Set (singleton, deleteFindMin, fromList, union)
a005244 n = a005244_list !! (n1)
a005244_list = f [2] (singleton 2) where
f xs s = y :
f (y : xs) (s' `union` fromList (map ((subtract 1) . (* y)) xs))
where (y, s') = deleteFindMin s
 Reinhard Zumkeller, Feb 26 2013


CROSSREFS

Sequence in context: A220315 A070819 A195667 * A058541 A023672 A023567
Adjacent sequences: A005241 A005242 A005243 * A005245 A005246 A005247


KEYWORD

nonn,nice,easy


AUTHOR

D. R. Hofstadter


EXTENSIONS

More terms from Jud McCranie


STATUS

approved



