OFFSET
1,3
COMMENTS
The formula is correct because k ones require exactly k - 1 binary operators to reduce to a single value. - Glen Whitney, Oct 06 2021
REFERENCES
W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
W. A. Beyer, Letter to N. J. A. Sloane, 1980
W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971. [Annotated scanned copy]
FORMULA
a(n) = A025280(n) - 1.
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name clarified by Glen Whitney, Oct 06 2021
STATUS
approved