This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005156 Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's). (Formerly M3115) 13

%I M3115

%S 1,1,3,26,646,45885,9304650,5382618660,8878734657276,

%T 41748486581283118,559463042542694360707,21363742267675013243931852,

%U 2324392978926652820310084179576,720494439459132215692530771292602232,636225819409712640497085074811372777428304

%N Number of alternating sign 2n+1 X 2n+1 matrices symmetric about the vertical axis (VSASM's); also 2n X 2n off-diagonally symmetric alternating sign matrices (OSASM's).

%C a(n+1) is the Hankel transform of A006013. - _Paul Barry_, Jan 20 2007

%C a(n+1) is the Hankel transform of A025174(n+1). - _Paul Barry_, Apr 14 2008

%D Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.

%D D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 201, VS(2n+1).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

%H Gheorghe Coserea, <a href="/A005156/b005156.txt">Table of n, a(n) for n = 0..66</a>

%H M. T. Batchelor, J. de Gier and B. Nienhuis, <a href="http://arXiv.org/abs/cond-mat/0101385">The quantum symmetric XXZ chain at Delta=-1/2, alternating sign matrices and plane partitions</a>, arXiv:cond-mat/0101385 [cond-mat.stat-mech], 2001, (see A_V(2n+1)).

%H N. T. Cameron, <a href="http://www.princeton.edu/~wmassey/NAM03/cameron.pdf">Random walks, trees and extensions of Riordan group techniques</a>

%H J. de Gier, <a href="http://arXiv.org/abs/math.CO/0211285">Loops, matchings and alternating-sign matrices</a>, arXiv:math/0211285 [math.CO], 2002-2003.

%H I. Fischer, <a href="http://arXiv.org/abs/math.CO/0501102">The number of monotone triangles with prescribed bottom row</a>, arXiv:math/0501102 [math.CO], 2005.

%H I. Gessel and G. Xin, <a href="http://arXiv.org/abs/math.CO/0505217">The generating function of ternary trees and continued fractions</a>, arXiv:math/0505217 [math.CO], 2005.

%H W. Hebsich and M. Rubey, <a href="http://arxiv.org/abs/math/0702086">Extended Rate, More Gfun</a>, arXiv:math/0702086 [math.CO], 2007. [See p. 23.]

%H G. Kuperberg, <a href="http://arXiv.org/abs/math.CO/0008184">Symmetry classes of alternating-sign matrices under one roof</a>, arXiv:math/0008184 [math.CO], 2000-2001, (see A_V(2n+1)).

%H A. V. Razumov and Yu. G. Stroganov, <a href="http://arXiv.org/abs/math-ph/0312071">On refined enumerations of some symmetry classes of alternating sign matrices</a>, arXiv:math-ph/0312071, 2003.

%H D. P. Robbins, <a href="http://arXiv.org/abs/math.CO/0008045">Symmetry classes of alternating sign matrices</a>, arXiv:math/0008045 [math.CO], 2000.

%H R. P. Stanley, <a href="/A005130/a005130.pdf">A baker's dozen of conjectures concerning plane partitions</a>, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]

%F The formula for a(n) (see the Maple code) was conjectured by Robbins and proved by Kuperberg.

%F a(n) = (1/2^n) * Product_{k=1..n} ((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!) (Razumov/Stroganov).

%F a(n) ~ exp(1/72) * Pi^(1/6) * 3^(3*n^2 + 3*n/2 + 11/72) / (A^(1/6) * GAMMA(1/3)^(1/3) * n^(5/72) * 2^(4*n^2 + 3*n + 1/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Mar 01 2015

%p A005156 := proc(n) local i,j,t1; (-3)^(n^2)*mul( mul( (6*j-3*i+1)/(2*j-i+2*n+1), j=1..n ),i=1..2*n+1); end;

%t Table[1/2^n Product[((6k-2)!(2k-1)!)/((4k-1)!(4k-2)!),{k,n}],{n,0,20}] (* _Harvey P. Dale_, Jul 07 2011 *)

%o (PARI) a(n) = prod(k = 0, n-1, (3*k+2)*(6*k+3)!*(2*k+1)!/((4*k+2)!*(4*k+3)!));

%o vector(15, n, a(n-1)) \\ _Gheorghe Coserea_, May 30 2016

%Y Cf. A109074, A134357.

%K nonn,nice,easy

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 01:17 EDT 2018. Contains 315360 sequences. (Running on oeis4.)