login
a(n) = floor(n*phi^9), where phi is the golden ratio, A001622.
20

%I #21 Aug 25 2023 08:50:09

%S 0,76,152,228,304,380,456,532,608,684,760,836,912,988,1064,1140,1216,

%T 1292,1368,1444,1520,1596,1672,1748,1824,1900,1976,2052,2128,2204,

%U 2280,2356,2432,2508,2584,2660,2736

%N a(n) = floor(n*phi^9), where phi is the golden ratio, A001622.

%C The first differences a(n) - a(n-1) generally equal 76 with exceptions for example at n = 77, 153, 229, 305, 381, 457, ..., 5777, 5854, 5930, .... where they equal 77. - _R. J. Mathar_, Jan 11 2008

%H G. C. Greubel, <a href="/A004924/b004924.txt">Table of n, a(n) for n = 0..10000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/NonRecursions.html">Non Recursions</a>

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%t Floor[GoldenRatio^9*Range[0, 60]] (* _G. C. Greubel_, Aug 24 2023 *)

%o (Magma) [Floor((38+17*Sqrt(5))*n): n in [0..60]]; // _G. C. Greubel_, Aug 24 2023

%o (SageMath) [floor(golden_ratio^9*n) for n in range(61)] # _G. C. Greubel_, Aug 24 2023

%Y Cf. A004919, A004920, A004921, A004922, A004923, A004925, A004926.

%Y Cf. A004927, A004928, A004929, A004930, A004931, A004932, A004933.

%Y Cf. A004934, A004935, A004976, A066096, A090909.

%Y Cf. A001622

%K nonn

%O 0,2

%A _N. J. A. Sloane_