login
Expansion of 1/(11 - Sum_{k=1..10} exp(k*x)).
3

%I #11 Sep 08 2022 08:44:33

%S 1,55,6435,1128325,263787183,77087372725,27032987762055,

%T 11059911220828525,5171317240313350863,2720215076708542774405,

%U 1589874326596159958849175,1022150945200597388917580125

%N Expansion of 1/(11 - Sum_{k=1..10} exp(k*x)).

%H Vincenzo Librandi, <a href="/A004708/b004708.txt">Table of n, a(n) for n = 0..200</a>

%F Equals expansion of 1/(11-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)-exp(6*x)-exp(7*x)-exp(8*x)-exp(9*x)-exp(10*x)).

%t With[{nn=20},CoefficientList[Series[1/(11-Exp[x]-Exp[2*x]-Exp[3*x]-Exp[4*x]-Exp[5*x]-Exp[6*x]-Exp[7*x]-Exp[8*x]-Exp[9*x]-Exp[10*x]),{x,0,nn}],x] Range[0,nn]!] (* _Vincenzo Librandi_, Jun 15 2012 *)

%o (PARI) x='x+O('x^30); Vec(serlaplace(1/(11-exp(x)-exp(2*x)-exp(3*x)-exp(4*x)-exp(5*x)-exp(6*x)-exp(7*x)-exp(8*x)-exp(9*x)-exp(10*x)))) \\ _G. C. Greubel_, Oct 09 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(11-Exp(x)-Exp(2*x)-Exp(3*x)-Exp(4*x)-Exp(5*x)-Exp(6*x)-Exp(7*x)-Exp(8*x)-Exp(9*x)-Exp(10*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Oct 09 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_