login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004677
Numerator of 2^n*(3*n-3)!/( ((n-1)!)^3 * (2*n)! ).
4
1, 1, 1, 2, 11, 91, 17, 323, 4807, 3289, 8671, 11687, 15283, 10743949, 15189721, 21069613, 1339779509, 1339779509, 101007559, 101007559, 4215217889, 185371558793, 8059632991, 11489264051, 815737747621, 2203307656324321, 41571842572157, 3284175563200403
OFFSET
1,4
LINKS
Pavel Valtr, The probability that n random points in a triangle are in convex position, Combinatorica 16 (1996), no. 4, 567-573.
Eric Weisstein's World of Mathematics, Sylvester's Four-Point Problem.
MATHEMATICA
Table[Numerator[2^n*(3*n - 3)!/(((n - 1)!)^3*(2*n)!)], {n, 1, 50}] (* G. C. Greubel, Oct 12 2018 *)
PROG
(PARI) for(n=1, 50, print1(numerator(2^n*(3*n - 3)!/(((n - 1)!)^3*(2*n)!)), ", ")) \\ G. C. Greubel, Oct 12 2018
(Magma) [Numerator(2^n*Factorial(3*n - 3)/((Factorial(n - 1))^3*Factorial(2*n))): n in [1..50]]; // G. C. Greubel, Oct 12 2018
CROSSREFS
Cf. A000139, A004824 (denominators).
Sequence in context: A371537 A138552 A258221 * A266656 A094955 A352292
KEYWORD
nonn,frac
STATUS
approved