login
Number of integer solutions to x^2 + 4 * y^2 = n.
7

%I #39 Oct 15 2022 08:09:04

%S 1,2,0,0,4,4,0,0,4,2,0,0,0,4,0,0,4,4,0,0,8,0,0,0,0,6,0,0,0,4,0,0,4,0,

%T 0,0,4,4,0,0,8,4,0,0,0,4,0,0,0,2,0,0,8,4,0,0,0,0,0,0,0,4,0,0,4,8,0,0,

%U 8,0,0,0,4,4,0,0,0,0,0,0,8,2,0,0,0,8,0,0,0,4,0,0,0,0,0,0,0,4,0,0,12,4,0,0,8

%N Number of integer solutions to x^2 + 4 * y^2 = n.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

%D B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.

%H Seiichi Manyama, <a href="/A004531/b004531.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from G. C. Greubel)

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%F Expansion of (eta(q^2) * eta(q^8))^5 / (eta(q)^2 * eta(q^4)^4 * eta(q^16)^2) in powers of q.

%F Expansion of phi(x) * phi(x^4) = phi(x^4)^2 + 2 * x * psi(x^4)^2 in powers of x where phi(x), psi(x) are Ramanujan theta functions.

%F Expansion of (theta2^2(q^2) + theta3^2(q^2) + theta4^2(q^2)) / 2 in powers of q.

%F Euler transform of period 16 sequence [ 2, -3, 2, 1, 2, -3, 2, -4, 2, -3, 2, 1, 2, -3, 2, -2, ...]. - _Michael Somos_, Jun 20 2014

%F G.f.: Sum_{i,j} x^(i^2 + 4 * j^2).

%F a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A004018(n). a(4*n + 1) = A004020(n).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - _Amiram Eldar_, Oct 15 2022

%e G.f. = 1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...

%t CoefficientList[EllipticTheta[3, 0, x]*EllipticTheta[3, 0, x^4] + O[x]^105, x] (* _Jean-François Alcover_, Nov 05 2015 *)

%o (PARI) {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n])}; /* _Michael Somos_, Jul 04 2005 */

%o (PARI) {a(n) = local(A, e1, e2, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2 + A); e2 = eta(x^4 + A); e4 = eta(x^8 + A); polcoeff( (e2^12 + e1^8 * e4^4 + 4 * x * e1^4 * e4^8) / (2 * e1^4 * e2^2 * e4^4), n))};

%o (Sage)

%o Q = DiagonalQuadraticForm(ZZ, [4, 1])

%o Q.representation_number_list(105) # _Peter Luschny_, Jun 20 2014

%Y Cf. A004018, A004020, A019669.

%K nonn

%O 0,2

%A _N. J. A. Sloane_