login
A004316
a(n) = binomial coefficient C(2n, n-10).
2
1, 22, 276, 2600, 20475, 142506, 906192, 5379616, 30260340, 163011640, 847660528, 4280561376, 21090682613, 101766230790, 482320623240, 2250829575120, 10363194502115, 47153358767970, 212327989773900, 947309492837400, 4191844505805495, 18412956934908690, 80347448443237920
OFFSET
10,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013
Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
FORMULA
E.g.f.: BesselI(10,2*x)*exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=10} 1/a(n) = 59*Pi/(9*sqrt(3)) - 26565167/2450448.
Sum_{n>=10} (-1)^n/a(n) = 1322746*log(phi)/(5*sqrt(5)) - 697534881193/12252240, where phi is the golden ratio (A001622). (End)
MATHEMATICA
Table[Binomial[2*n, n-10], {n, 10, 30}] (* Amiram Eldar, Aug 27 2022 *)
PROG
(Magma) [ Binomial(2*n, n-10): n in [10..150] ]; // Vincenzo Librandi, Apr 13 2011
(PARI) a(n)=binomial(2*n, n-10) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Cf. A001622.
Sequence in context: A023020 A022650 A172226 * A121792 A020922 A258461
KEYWORD
nonn,easy
STATUS
approved