OFFSET
0,2
REFERENCES
J. M. Alonso, Growth functions of amalgams, in Alperin, ed., Arboreal Group Theory, Springer, pp. 1-34, esp. p. 32.
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 160, middle display.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..800
Hacène Belbachir, Soumeya Merwa Tebtoub, László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Index entries for linear recurrences with constant coefficients, signature (18,-1).
FORMULA
a(n) = (1/2)*(1 - (-1)^2^n + (20+9*sqrt(5))*((9+4*sqrt(5))^(2*n) - 1)/(9+4*sqrt(5))^(n+1)). - Gerry Martens, May 30 2015
MAPLE
f:= gfun:-rectoproc({a(n)=18*a(n-1)-a(n-2), a(0)=1, a(1)=20, a(2)=360}, a(n), remember):
map(f, [$0..20]); # Robert Israel, Jun 01 2015
MATHEMATICA
CoefficientList[Series[(1+x)^2/(1-18*x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 13 2012 *)
a[n_]:=1/2(1-(-1)^2^n+(20+9 Sqrt[5])((9+4 Sqrt[5])^(2 n)-1)/(9+4 Sqrt[5])^(n+1)); Table[a[n] // FullSimplify, {n, 0, 20}] (* Gerry Martens, May 30 2015 *)
PROG
(PARI) Vec((1+x)^2/(1-18*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved