login
a(n) = (2*n + 4) * (1*3*5*...*(2*n+1))^2.
1

%I #14 Sep 08 2022 08:44:32

%S 4,54,1800,110250,10716300,1512784350,292183491600,73958946311250,

%T 23749039426612500,9430743556307823750,4537044990907363935000,

%U 2600104866872495148416250,1750070583471871734510937500,1366930130733208386919792968750,1226227455943070136959515612500000

%N a(n) = (2*n + 4) * (1*3*5*...*(2*n+1))^2.

%H G. C. Greubel, <a href="/A003955/b003955.txt">Table of n, a(n) for n = 0..222</a>

%F Equals (2*n+4) * A001818(n+1).

%F Equals (n+2)!*(n+1)!*binomial(2*n+2, n+1)^2/2^(2*n+1). - _G. C. Greubel_, Sep 24 2019

%p seq((n+2)!*(n+1)!*binomial(2*n+2, n+1)^2/2^(2*n+1), n=0..20); # _G. C. Greubel_, Sep 24 2019

%t Table[(n+2)!*(n+1)!*Binomial[2*n+2, n+1]^2/2^(2*n+1), {n,0,20}] (* _G. C. Greubel_, Sep 24 2019 *)

%o (PARI) vector(21, n, (n+1)!*n!*binomial(2*n, n)^2/2^(2*n-1) ) \\ _G. C. Greubel_, Sep 24 2019

%o (Magma) F:=Factorial; [F(n+2)*F(n+1)*Binomial(2*n+2,n+1)^2/2^(2*n+1): n in [0..20]]; // _G. C. Greubel_, Sep 24 2019

%o (Sage) f=factorial; [f(n+2)*f(n+1)*binomial(2*n+2,n+1)^2/2^(2*n+1) for n in (0..20)] # _G. C. Greubel_, Sep 24 2019

%o (GAP) F:=Factorial;; List([0..20], n-> F(n+2)*F(n+1)*Binomial(2*n+2, n+1)^2/2^(2*n+1) ); # _G. C. Greubel_, Sep 24 2019

%Y Cf. A001818.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Joe Keane (jgk(AT)jgk.org)

%E More terms added by _G. C. Greubel_, Sep 24 2019