The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003685 Number of Hamiltonian paths in P_3 X P_n. 4
 1, 8, 20, 62, 132, 336, 688, 1578, 3190, 6902, 13878, 29038, 58238, 119518, 239390, 485822, 972414, 1960830, 3923326, 7882494, 15768574, 31616510, 63240702, 126655486, 253327358, 507033598, 1014102014, 2029023230, 4058120190, 8118001662, 16236158974, 32476086270 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154. LINKS Andrew Howroyd, Table of n, a(n) for n = 1..500 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. F. Faase, Results from the counting program A. Kloczkowski, and R. L. Jernigan, Transfer matrix method for enumeration and generation of compact self-avoiding walks. I. Square lattices, The Journal of Chemical Physics 109, 5134 (1998); doi: 10.1063/1.477128. FORMULA a(n) = 3*a(n-1) + 2*a(n-2) - 12*a(n-3) + 4*a(n-4) + 12*a(n-5) - 8*a(n-6), n>8. From David Bevan, Jul 21 2006: (Start) a(2*m) = 121*2^(2*m-4) - 4*m*2^m - 25*2^(m-2) - 2, m > 1. a(2*m+1) = 121*2^(2*m-3) - 31*m*2^(m-2) - 23*2^(m-1) - 2, m > 0. a(n) = 8*a(n-2) - 20*a(n-4) + 16*a(n-6) + 6, n > 8. (End) O.g.f.: (2*x^7-8*x^6+12*x^5-2*x^4-2*x^3-6*x^2+5*x+1)*x/((2*x-1)*(-1+2*x^2)^2*(-1+x)). - R. J. Mathar, Dec 05 2007 CROSSREFS Row n=3 of A332307. Sequence in context: A179756 A238507 A101363 * A066011 A333156 A007016 Adjacent sequences:  A003682 A003683 A003684 * A003686 A003687 A003688 KEYWORD nonn AUTHOR EXTENSIONS Terms a(29) and beyond from Andrew Howroyd, Feb 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 20:32 EDT 2020. Contains 337925 sequences. (Running on oeis4.)