login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003685
Number of Hamiltonian paths in P_3 X P_n.
6
1, 8, 20, 62, 132, 336, 688, 1578, 3190, 6902, 13878, 29038, 58238, 119518, 239390, 485822, 972414, 1960830, 3923326, 7882494, 15768574, 31616510, 63240702, 126655486, 253327358, 507033598, 1014102014, 2029023230, 4058120190, 8118001662, 16236158974, 32476086270
OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
A. Kloczkowski, and R. L. Jernigan, Transfer matrix method for enumeration and generation of compact self-avoiding walks. I. Square lattices, The Journal of Chemical Physics 109, 5134 (1998); doi: 10.1063/1.477128.
FORMULA
a(n) = 3*a(n-1) + 2*a(n-2) - 12*a(n-3) + 4*a(n-4) + 12*a(n-5) - 8*a(n-6), n>8.
From David Bevan, Jul 21 2006: (Start)
a(2*m) = 121*2^(2*m-4) - 4*m*2^m - 25*2^(m-2) - 2, m > 1.
a(2*m+1) = 121*2^(2*m-3) - 31*m*2^(m-2) - 23*2^(m-1) - 2, m > 0.
a(n) = 8*a(n-2) - 20*a(n-4) + 16*a(n-6) + 6, n > 8. (End)
O.g.f.: (2*x^7-8*x^6+12*x^5-2*x^4-2*x^3-6*x^2+5*x+1)*x/((2*x-1)*(-1+2*x^2)^2*(-1+x)). - R. J. Mathar, Dec 05 2007
CROSSREFS
Row n=3 of A332307.
Sequence in context: A179756 A238507 A101363 * A066011 A375700 A333156
KEYWORD
nonn
EXTENSIONS
Terms a(29) and beyond from Andrew Howroyd, Feb 10 2020
STATUS
approved