login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003667 a(n) is smallest number which is uniquely of the form a(j)+a(k) with 1<=j<k<n.
(Formerly M3746)
5
1, 5, 6, 7, 8, 9, 10, 12, 20, 22, 23, 24, 26, 38, 39, 40, 41, 52, 57, 69, 70, 71, 82, 87, 98, 102, 113, 119, 129, 130, 133, 144, 160, 161, 162, 163, 175, 196, 205, 208, 209, 222, 223, 224, 226, 237, 253, 254, 255, 256, 268, 269, 270, 271, 272, 284, 285, 286, 303, 318 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

An Ulam-type sequence - see A002858 for many further references, comments, etc.

REFERENCES

R. K. Guy, ``s-Additive sequences,'' preprint, 1994.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

S. R. Finch, Patterns in 1-additive sequences, Experimental Mathematics 1 (1992), 57-63.

R. K. Guy, s-Additive sequences, Preprint, 1994. (Annotated scanned copy)

Eric Weisstein's World of Mathematics, Ulam Sequence

MATHEMATICA

Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Total, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {1, 5}, 58] (* Michael De Vlieger, Nov 16 2017 *)

PROG

(Haskell)

a003667 n = a003667_list !! (n-1)

a003667_list = 1 : 5 : ulam 2 5 a003667_list

-- Function ulam as defined in A002858.

-- Reinhard Zumkeller, Nov 03 2011

CROSSREFS

Sequence in context: A121542 A182306 A023379 * A138469 A089362 A121537

Adjacent sequences:  A003664 A003665 A003666 * A003668 A003669 A003670

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 13:12 EDT 2019. Contains 326100 sequences. (Running on oeis4.)