login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003587
Roman numerals with 1 letter, in numerical order; then those with 2 letters, etc.
8
1, 5, 10, 50, 100, 500, 1000, 2, 4, 6, 9, 11, 15, 20, 40, 51, 55, 60, 90, 101, 105, 110, 150, 200, 400, 501, 505, 510, 550, 600, 900, 1001, 1005, 1010, 1050, 1100, 1500, 2000, 3, 7, 12, 14, 16, 19, 21, 25, 30, 41, 45, 52, 54, 56, 59, 61, 65, 70, 91, 95, 102, 104, 106, 109, 111, 115, 120, 140, 151
OFFSET
1,2
COMMENTS
The sequence is finite because 3999 is the largest number that can be written using the symbols I,V,X,L,C,D,M. - J. Lowell, Nov 17 2020
The Romans had symbols for 5000, 10000, 50000, and 100000, but they have no simple equivalents in our current alphabet. See The Book of Numbers, p. 19. The symbol for 100000 is sometimes represented by (((|))). - N. J. A. Sloane, Nov 28 2020
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 19.
LINKS
EXAMPLE
Written in Roman numerals, the sequence reads: I, V, X, L, C, D, M, II, IV, VI, IX, XI, XV, XX, XL, LI, LV, LX, XC, CI, CV, CX, CL, CC, CD, DI, DV, DX, DL, DC, CM, MI, MV, MX, MV, MC, MD, MM, III, VII, XII, ... - M. F. Hasler, Jan 12 2015
MATHEMATICA
A003587full = SortBy[Range[3999], StringLength[RomanNumeral[#]] &];
A003587full[[;; 100]] (* Paolo Xausa, Mar 19 2024 *)
PROG
(PARI) for(d=1, 4, for(n=d, d*1000, A006968(n)==d && print1(n", "))) \\ M. F. Hasler, Jan 12 2015
(Python)
def f(s, k):
return s[:2] if k==4 else (s[1]*(k>=5)+s[0]*(k%5) if k<9 else s[0]+s[2])
def roman(n):
m, c, x, i = n//1000, (n%1000)//100, (n%100)//10, n%10
return "M"*m + f("CDM", c) + f("XLC", x) + f("IVX", i)
def afull():
return sorted(list(range(1, 4000)), key=lambda x: (len(roman(x)), x))
print(afull()) # Michael S. Branicky, Dec 04 2022
CROSSREFS
KEYWORD
nonn,base,fini,full,look
AUTHOR
N. J. A. Sloane, J. H. Conway and John Jackson (ab158(AT)freenet.uchsc.edu)
EXTENSIONS
More terms from M. F. Hasler, Jan 12 2015
STATUS
approved