OFFSET
1,1
COMMENTS
Primes p such that p = 1 + 3*m^2 for some integer m (A111051). - Michael Somos, Sep 15 2005
REFERENCES
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..5000
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
Eric Weisstein's World of Mathematics, Cuban Prime.
Wikipedia, Cuban prime.
FORMULA
a(n) = 3*A111051(n)^2 + 1. - Paul F. Marrero Romero, Nov 03 2023
EXAMPLE
193 is a term since 193 = (9^3 - 7^3)/(9 - 7) is a prime.
MATHEMATICA
Select[Table[3n^2+1, {n, 0, 700}], PrimeQ] (* Vincenzo Librandi, Dec 02 2011 *)
PROG
(PARI) {a(n)= local(m, c); if(n<1, 0, c=0; m=1; while( c<n, m++; if( isprime(m)&issquare((m-1)/3), c++)); m)} /* Michael Somos, Sep 15 2005 */
(Magma) [a: n in [0..400] | IsPrime(a) where a is 3*n^2+1]; // Vincenzo Librandi, Dec 02 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 29 2013
STATUS
approved