login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002648 A variant of the cuban primes: primes p = (x^3 - y^3 )/(x - y) where x = y + 2.
(Formerly M4910 N2105)
7
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249, 129793, 139969 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes p such that p = 1 + 3n^2 for some integer n. - Michael Somos, Sep 15 2005

REFERENCES

A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..5000

Eric Weisstein's World of Mathematics, Cuban Prime

Wikipedia, Cuban prime

MATHEMATICA

Select[Table[3n^2+1, {n, 0, 700}], PrimeQ] (* Vincenzo Librandi, Dec 02 2011 *)

PROG

(PARI) {a(n)= local(m, c); if(n<1, 0, c=0; m=1; while( c<n, m++; if( isprime(m)&issquare((m-1)/3), c++)); m)} /* Michael Somos, Sep 15 2005 */

(MAGMA) [a: n in [0..400] | IsPrime(a) where a is 3*n^2+1]; // Vincenzo Librandi, Dec 02 2011

CROSSREFS

Cf. A002407.

A subsequence of A007645.

Sequence in context: A084901 A006239 A142040 * A055840 A243417 A163845

Adjacent sequences:  A002645 A002646 A002647 * A002649 A002650 A002651

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Entry revised by N. J. A. Sloane, Jan 29 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 21 21:20 EDT 2014. Contains 248377 sequences.