login
A002648
A variant of the cuban primes: primes p = (x^3 - y^3)/(x - y) where x = y + 2.
(Formerly M4910 N2105)
7
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249, 129793, 139969, 142573, 147853, 169933
OFFSET
1,1
COMMENTS
Primes p such that p = 1 + 3*m^2 for some integer m (A111051). - Michael Somos, Sep 15 2005
REFERENCES
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
Eric Weisstein's World of Mathematics, Cuban Prime.
Wikipedia, Cuban prime.
FORMULA
a(n) = 3*A111051(n)^2 + 1. - Paul F. Marrero Romero, Nov 03 2023
EXAMPLE
193 is a term since 193 = (9^3 - 7^3)/(9 - 7) is a prime.
MATHEMATICA
Select[Table[3n^2+1, {n, 0, 700}], PrimeQ] (* Vincenzo Librandi, Dec 02 2011 *)
PROG
(PARI) {a(n)= local(m, c); if(n<1, 0, c=0; m=1; while( c<n, m++; if( isprime(m)&issquare((m-1)/3), c++)); m)} /* Michael Somos, Sep 15 2005 */
(Magma) [a: n in [0..400] | IsPrime(a) where a is 3*n^2+1]; // Vincenzo Librandi, Dec 02 2011
CROSSREFS
Cf. A002407, A111051 (values of m).
A subsequence of A007645.
Sequence in context: A006239 A271560 A142040 * A055840 A243417 A367592
KEYWORD
nonn
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 29 2013
STATUS
approved