login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002629
Number of permutations of length n with one 3-sequence.
(Formerly M2003 N0792)
8
0, 0, 1, 2, 11, 62, 406, 3046, 25737, 242094, 2510733, 28473604, 350651588, 4661105036, 66529260545, 1014985068610, 16484495344135, 283989434253186, 5173041992087562, 99346991708245506, 2006304350543326057, 42505510227603678206, 942678881135812883321
OFFSET
1,4
COMMENTS
a(n) is also the number of successions in all permutations of [n-1] with no 3-sequences. A succession of a permutation p is a position i such that p(i+1) - p(i) = 1. Example: a(4)=2 because in 132, 213, 2*31, 31*2, 321 we have 0+0+1+1+0=2 successions (marked *). - Emeric Deutsch, Sep 07 2010
REFERENCES
Jackson, D. M.; Reilly, J. W. Permutations with a prescribed number of p-runs. Ars Combinatoria 1 (1976), no. 1, 297-305.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Riordan, Permutations without 3-sequences, Bull. Amer. Math. Soc., 51 (1945), 745-748.
FORMULA
a(n) = Sum(binomial(n-k-2,k-1)*A000166(n-k), k=1..floor((n-1)/2)). - Emeric Deutsch, Sep 07 2010
a(n) ~ (n-1)! * (1 - 4/n + 13/(2*n^2) + 29/(6*n^3) - 551/(24*n^4) - 1101/(20*n^5) + 58879/(720*n^6)). - Vaclav Kotesovec, Mar 16 2015
EXAMPLE
a(4) = 2 because we have 2341 and 4123. - Emeric Deutsch, Sep 07 2010
MAPLE
d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-k-2, k-1)*d[n-k], k = 1 .. floor((1/2)*n-1/2)) end proc; seq(a(n), n = 1 .. 23); # Emeric Deutsch, Sep 07 2010
# second Maple program:
a:= proc(n) option remember;
`if`(n<5, -n*(n-1)*(n-2)*(n-5)/12,
(n-4) *a(n-1)+(3*n-6) *a(n-2)+(4*n-8) *a(n-3)
+(3*n-6)*a(n-4)+(n-2) *a(n-5))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jan 25 2014
MATHEMATICA
a[n_] := Sum[Binomial[n-k-2, k-1]*Subfactorial[n-k], {k, 1, (n-1)/2}]; Array[a, 23] (* Jean-François Alcover, Mar 13 2014, after Emeric Deutsch *)
CROSSREFS
Sequence in context: A183160 A020078 A365131 * A235937 A065928 A188648
KEYWORD
nonn
EXTENSIONS
More terms from Max Alekseyev, Feb 20 2010
STATUS
approved