login
Glaisher's function W(n).
(Formerly M3347 N1347)
3

%I M3347 N1347 #27 Mar 04 2019 01:53:46

%S 0,1,4,-8,-48,10,224,80,-448,-231,40,-248,1408,1466,-2240,-80,1280,

%T -4766,-924,1944,-480,9600,6944,-2704,-8704,-15525,5864,-3984,-14080,

%U 25498,2240,10816,33792,-29760,-19064,800,11088,1994,-54432,-11728,-4480

%N Glaisher's function W(n).

%D J. W. L. Glaisher, On the representation of a number as a sum of 14 and 16 squares, Quart. J. Math. 38 (1907), 178-236 (see p. 190).

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Sean A. Irvine, <a href="/A002470/b002470.txt">Table of n, a(n) for n = 0..850</a> (terms 0..199 from N. J. A. Sloane)

%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>

%F Coefficients of the q-series rho^7*(eta(q) * eta(q^4) / eta(q^2)^2)^24, where rho is A004018 and the second factor is given by A100130.

%Y Cf. A004018, A100130.

%Y Bisections are A002286, A002287.

%K sign

%O 0,3

%A _N. J. A. Sloane_

%E Edited (new offset, signs added, more terms, formula) by _N. J. A. Sloane_, Nov 26 2018