%I M2601 N1028 #25 Feb 24 2022 08:19:17
%S 0,3,-6,-30,360,504,-44016,204048,8261760,-128422272,-1816480512,
%T 76562054400,124207469568,-51042832542720,580686719698944,
%U 36632422458820608,-1141184282933624832,-23612862502431719424,1881307594631033978880,253019693533000826880
%N E.g.f.: high-temperature series in J/2kT for logarithm of partition function for the spin-1/2 linear (1D) Heisenberg model.
%C From _Andrey Zabolotskiy_, Feb 24 2022: (Start)
%C The power-series parameter may be also written as J/4kT, depending on the particular form of the Hamiltonian.
%C a(n) = alpha_n / (n * (n-1)), where alpha_n are given in Table I of Shiroishi & Takahashi. (End)
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Andrey Zabolotskiy, <a href="/A002164/b002164.txt">Table of n, a(n) for n = 1..51</a>
%H G. A. Baker et al., <a href="https://doi.org/10.1103/PhysRev.135.A1272">High-temperature series expansions for the spin-1/2 Heisenberg model by the method of irreducible representations of the symmetric group</a>, Phys. Rev., 135 (1964), pages A_1272-A_1277.
%H Masahiro Shiroishi and Minoru Takahashi, <a href="https://doi.org/10.1103/PhysRevLett.89.117201">Integral Equation Generates High-Temperature Expansion of the Heisenberg Chain</a>, Phys. Rev. Lett., 89 (2002), 117201.
%Y Cf. A005399.
%K sign
%O 1,2
%A _N. J. A. Sloane_
%E Name clarified, terms a(14) and beyond added by _Andrey Zabolotskiy_, Feb 24 2022