The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001700 a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.
(Formerly M2848 N1144)
397

%I M2848 N1144 #653 Apr 26 2024 02:15:02

%S 1,3,10,35,126,462,1716,6435,24310,92378,352716,1352078,5200300,

%T 20058300,77558760,300540195,1166803110,4537567650,17672631900,

%U 68923264410,269128937220,1052049481860,4116715363800,16123801841550,63205303218876,247959266474052

%N a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.

%C To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n + 1 to 1..n + 1, notice that we can describe such a map by a nondecreasing sequence of length n + 1 with entries from 1 to n + 1. The number k of increases in this sequence is anywhere from 0 to n. We can specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k = 0..n} C((n+1) + k - 1, k) = C(2*n+1, n+1).

%C Also number of ordered partitions (or compositions) of n + 1 into n + 1 parts. E.g., a(2) = 10: 003, 030, 300, 012, 021, 102, 120, 210, 201, 111. - Mambetov Bektur (bektur1987(AT)mail.ru), Apr 17 2003

%C Also number of walks of length n on square lattice, starting at origin, staying in first and second quadrants. - _David W. Wilson_, May 05 2001. (E.g., for n = 2 there are 10 walks, all starting at 0, 0: 0, 1 -> 0, 0; 0, 1 -> 1, 1; 0, 1 -> 0, 2; 1, 0 -> 0, 0; 1, 0 -> 1, 1; 1, 0 -> 2, 0; 1, 0 -> 1, -1; -1, 0 -> 0, 0; -1, 0 -> -1, 1; -1, 0-> -2, 0.)

%C Also total number of leaves in all ordered trees with n + 1 edges.

%C Also number of digitally balanced numbers [A031443] from 2^(2*n+1) to 2^(2*n+2). - _Naohiro Nomoto_, Apr 07 2001

%C Also number of ordered trees with 2*n + 2 edges having root of even degree and nonroot nodes of outdegree 0 or 2. - _Emeric Deutsch_, Aug 02 2002

%C Also number of paths of length 2*d(G) connecting two neighboring nodes in optimal chordal graph of degree 4, G(2*d(G)^2 + 2*d(G) + 1, 2d(G) + 1), where d(G) = diameter of graph G. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 11 2002

%C Define an array by m(1, j) = 1, m(i, 1) = i, m(i, j) = m(i, j-1) + m(i-1, j); then a(n) = m(n, n), diagonal of A165257 - _Benoit Cloitre_, May 07 2002

%C Also the numerator of the constant term in the expansion of cos^(2*n)(x) or sin^(2*n)(x) when the denominator is 2^(2*n-1). - _Robert G. Wilson v_

%C Consider the expansion of cos^n(x) as a linear combination of cosines of multiple angles. If n is odd, then the expansion is a combination of a*cos((2*k-1)*x)/2^(n-1) for all 2*k - 1 <= n. If n is even, then the expansion is a combination of a*cos(2k*x)/2^(n-1) terms plus a constant. "The constant term, [a(n)/2^(2n-1)], is due to the fact that [cos^2n(x)] is never negative, i.e., electrical engineers would say the average or 'dc value' of [cos^(2*n)(x)] is [a(n)/2^(2*n-1)]. The dc value of [cos^(2*n-1)(x)] on the other hand, is zero because it is symmetrical about the horizontal axis, i.e., it is negative and positive equally." Nahin[62] - _Robert G. Wilson v_, Aug 01 2002

%C Also number of times a fixed Dyck word of length 2*k occurs in all Dyck words of length 2*n + 2*k. Example: if the fixed Dyck word is xyxy (k = 2), then it occurs a(1) = 3 times in the 5 Dyck words of length 6 (n = 1): (xy[xy)xy], xyxxyy, xxyyxy, x(xyxy)y, xxxyyy (placed between parentheses). - _Emeric Deutsch_, Jan 02 2003

%C a(n+1) is the determinant of the n X n matrix m(i, j) = binomial(2*n-i, j). - _Benoit Cloitre_, Aug 26 2003

%C a(n-1) = (2*n)!/(2*n!*n!), formula in [Davenport] used by Gauss for the special case prime p = 4*n + 1: x = a(n-1) mod p and y = x*(2n)! mod p are solutions of p = x^2 + y^2. - _Frank Ellermann_. Example: For prime 29 = 4*7 + 1 use a(7-1) = 1716 = (2*7)!/(2*7!*7!), 5 = 1716 mod 29 and 2 = 5*(2*7)! mod 29, then 29 = 5*5 + 2*2.

%C The number of compositions of 2*n, say c_1 + c_2 + ... + c_k = 2n, satisfy that Sum_{i = 1..j} c_i < 2*j for all j = 1..k, or equivalently, the number of subsets, say S, of [2*n-1] = {1, 2, ..., 2*n-1} with at least n elements such that if 2k is in S, then there must be at least k elements in S smaller than 2k. E.g., a(2) = 3 because we can write 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1. - Ricky X. F. Chen (ricky_chen(AT)mail.nankai.edu.cn), Jul 30 2006

%C The number of walks of length 2*n + 1 on an infinite linear lattice that begin at the origin and end at node (1). Also the number of paths on a square lattice from the origin to (n+1, n) that use steps (1,0) and (0,1). Also number of binary numbers of length 2*n + 1 with n + 1 ones and n zeros. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007

%C If Y is a 3-subset of an 2*n-set X then, for n >= 3, a(n-1) is the number of n-subsets of X having at least two elements in common with Y. - _Milan Janjic_, Dec 16 2007

%C Also the number of rankings (preferential arrangements) of n unlabeled elements onto n levels when empty levels are allowed. - _Thomas Wieder_, May 24 2008

%C Also the Catalan transform of A000225 shifted one index, i.e., dropping A000225(0). - _R. J. Mathar_, Nov 11 2008

%C With offset 1. The number of solutions in nonnegative integers to X1 + X2 + ... + Xn = n. The number of terms in the expansion of (X1 + X2 + ... + Xn)^n. The coefficient of x^n in the expansion of (1 + x + x^2 + ...)^n. The number of distinct image sets of all functions taking [n] into [n]. - _Geoffrey Critzer_, Feb 22 2009

%C The Hankel transform of the aerated sequence 1, 0, 3, 0, 10, 0, ... is 1, 3, 3, 5, 5, 7, 7, ... (A109613(n+1)). - _Paul Barry_, Apr 21 2009

%C Also the number of distinct network topologies for a network of n items with 1 to n - 1 unidirectional connections to other objects in the network. - Anthony Bachler, May 05 2010

%C Equals INVERT transform of the Catalan numbers starting with offset 1. E.g.: a(3) = 35 = (1, 2, 5) dot (10, 3, 1) + 14 = 21 + 14 = 35. - _Gary W. Adamson_, May 15 2009

%C The integral of 1/(1+x^2)^(n+1) is given by a(n)/2^(2*n - 1) * (x/(1 + x^2)^n*P(x) + arctan(x)), where P(x) is a monic polynomial of degree 2*n - 2 with rational coefficients. - _Christiaan van de Woestijne_, Jan 25 2011

%C a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps at level 0 come in 2 colors and there are no (2,0)-steps at a higher level. Example: a(2) = 10 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 2^2 = 4 paths of shape HH, 2 paths of shape HUD, 2 paths of shape UDH, and 1 path of each of the shapes UDUD and UUDD. - _Emeric Deutsch_, May 02 2011

%C a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=35 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 2 paths of shape UHD. - _Emeric Deutsch_, May 02 2011

%C Also number of digitally balanced numbers having length 2*(n + 1) in binary representation: a(n) = #{m: A070939(A031443(m)) = 2*(n + 1)}. - _Reinhard Zumkeller_, Jun 08 2011

%C a(n) equals 2^(2*n + 3) times the coefficient of Pi in 2F1([1/2, n+2]; [3/2]; -1). - _John M. Campbell_, Jul 17 2011

%C For positive n, a(n) equals 4^(n+2) times the coefficient of Pi^2 in Integral_{x = 0..Pi/2} x sin^(2*n + 2)x. - _John M. Campbell_, Jul 19 2011 [Apparently, the contributor means Integral_{x = 0..Pi/2} x * (sin(x))^(2*n + 2).]

%C a(n-1) = C(2*n, n)/2 is the number of ways to assign 2*n people into 2 (unlabeled) groups of size n. - _Dennis P. Walsh_, Nov 09 2011

%C Equals row sums of triangle A205945. - _Gary W. Adamson_, Feb 01 2012

%C a(n-1) gives the number of n-regular sequences defined by Erdős and Gallai in 1960 in connection with the degree sequences of simple graphs. - _Matuszka Tamás_, Mar 06 2013

%C a(n) is the sum of falling diagonals of squares in the comment in A085812 (equivalent to the Cloitre formula of Aug 2002). - _John Molokach_, Sep 26 2013

%C For n > 0: largest terms of Zigzag matrices as defined in A088961. - _Reinhard Zumkeller_, Oct 25 2013

%C Also the number of different possible win/loss round sequences (from the perspective of the eventual winner) in a "best of 2*n + 1" two-player game. For example, a(2) = 10 means there are 10 different win/loss sequences in a "best of 5" game (like a tennis match in which the first player to win 3 sets, out of a maximum of 5, wins the match); the 10 sequences are WWW, WWLW, WWLLW, WLWW, WLWLW, WLLWW, LWWW, LWWLW, LWLWW, LLWWW. See also A072600. - _Philippe Beaudoin_, May 14 2014; corrected by _Jon E. Schoenfield_, Nov 23 2014

%C When adding 1 to the beginning of the sequence: Convolving a(n)/2^n with itself equals 2^(n+1). For example, when n = 4: convolving {1, 1/1, 3/2, 10/4, 35/8, 126/16} with itself is 32 = 2^5. - _Bob Selcoe_, Jul 16 2014

%C From _Tom Copeland_, Nov 09 2014: (Start)

%C The shifted array belongs to a family of arrays associated to the Catalan A000108 (t = 1), and Riordan, or Motzkin sums A005043 (t = 0), with the o.g.f. [1 - sqrt(1 - 4x/(1 + (1 - t)x))]/2 and inverse x*(1 - x)/[1 + (t - 1)*x*(1 - x)]. See A091867 for more info on this family. Here is t = -3 (mod signs in the results).

%C Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1 + t*x) with inverse P(x, -t).

%C O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1 - 4*x))]/2 = -C[P(-x, 4)].

%C Inverse o.g.f: Ginv(x) = x*(1 + x)/(1 + 4*x*(1 + x)) = -P(Cinv(-x), -4) (shifted signed A001792). A088218(x) = 1 + G(x).

%C Equals A001813/2 omitting the leading 1 there. (End)

%C Placing n distinguishable balls into n indistinguishable boxes gives A000110(n) (the number of set partitions). - _N. J. A. Sloane_, Jun 19 2015

%C The sequence is the INVERTi transform of A049027: (1, 4, 17, 74, 326, ...). - _Gary W. Adamson_, Jun 23 2015

%C a(n) is the number of compositions of 2*n + 2 such that the sum of the elements at odd positions is equal to the sum of the elements at even positions. a(2) = 10 because there are 10 such compositions of 6: (3, 3), (1, 3, 2), (2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 2, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1). - _Ran Pan_, Oct 08 2015

%C a(n-1) is also the Schur function of the partition (n) of n evaluated at x_1 = x_2 = ... = x_n = 1, i.e., the number of semistandard Young tableaux of shape (n) (weakly increasing rows with n boxes with numbers from {1, 2, ..., n}). - _Wolfdieter Lang_, Oct 11 2015

%C Also the number of ordered (rooted planar) forests with a total of n+1 edges and no trivial trees. - _Nachum Dershowitz_, Mar 30 2016

%C a(n) is the number of sets (i1,...in) of length n so that n >= i1 >= i2 >= ...>= in >= 1. For instance, n=3 as there are only 10 such sets (3,3,3) (3,3,2) (3,3,1) (3,2,2) (3,2,1) (3,1,1) (2,2,2) (2,2,1) (2,1,1) (1,1,1,) 3,2,1 is each used 10 times respectively. - _Anton Zakharov_, Jul 04 2016

%C The repeated middle term in the odd rows of Pascal's triangle, or half the central binomial coefficient in the even rows of Pascal's triangle, n >= 2. - _Enrique Navarrete_, Feb 12 2018

%C a(n) is the number of walks of length 2n+1 from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n+1 from the origin with steps (1,0) and (0,1) that stay in the first octant. - _Alexander Burstein_, Dec 24 2019

%C Total number of nodes summed over all Dyck paths of semilength n. - _Alois P. Heinz_, Mar 08 2020

%C a(n-1) is the determinant of the n X n matrix m(i, j) = binomial(n+i-1, j). - _Fabio Visonà_, May 21 2022

%C Let X_i be iid standard Gaussian random variable N(0,1), and S_n be the partial sum S_n = X_1+...+X_n. Then P(S_1>0,S_2>0,...,S_n>0) = a(n+1)/2^(2n-1) = a(n+1) / A004171(n+1). For example, P(S_1>0) = 1/2, P(S_1>0,S_2>0) = 3/8, P(S_1>0,S_2>0,S_3>0) = 5/16, etc. This probability is also equal to the volume of the region x_1 > 0, x_2 > -x_1, x_3 > -(x_1+x_2), ..., x_n > -(x_1+x_2+...+x_(n-1)) in the hypercube [-1/2, 1/2]^n. This also holds for the Cauchy distribution and other stable distributions with mean 0, skew 0 and scale 1. - _Xiaohan Zhang_, Nov 01 2022

%C a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 213, and 321. - _Lara Pudwell_, Apr 10 2023

%C Number of vectors in (Z_>=0)^(n+1) such that the sum of the components is n+1. binomial(2*n-1, n) provides this property for n. - _Michael Richard_, Jun 12 2023

%C Also number of discrete negations on the finite chain L_n={0,1,...,n-1,n}, i.e., monotone decreasing unary operators such that N(0)=n and N(n)=0. - _Marc Munar_, Oct 10 2023

%C a(n) is the number of Dyck paths of semilength n+1 having one of its peaks marked. - _Juan B. Gil_, Jan 03 2024

%C a(n) is the dimension of the (n+1)-st symmetric power of an (n+1)-dimensional vector space. - _Mehmet A. Ates_, Feb 15 2024

%D H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, ch. V.3 (p. 122).

%D A. Frosini, R. Pinzani, and S. Rinaldi, About half the middle binomial coefficient, Pure Math. Appl., 11 (2000), 497-508.

%D Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

%D J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.

%D Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 62.

%D L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Matuszka Tamás, <a href="/A001700/b001700.txt">Table of n, a(n) for n = 0..1200</a> (first 100 terms from T. D. Noe)

%H J. Abate and W. Whitt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Whitt/whitt6.html">Brownian Motion and the Generalized Catalan Numbers</a>, J. Int. Seq. 14 (2011), #11.2.6, theorem 4.

%H Ayomikun Adeniran and Lara Pudwell, <a href="https://doi.org/10.54550/ECA2023V3S3R17">Pattern avoidance in parking functions</a>, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.

%H José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Agapito/agapito2.html">On One-Parameter Catalan Arrays</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.

%H Martin Aigner, <a href="https://doi.org/10.1016/j.disc.2007.06.012">Enumeration via ballot numbers</a>, Discrete Math., 308 (2008), 2544-2563.

%H Elena Barcucci, Andrea Frosini, and Simone Rinaldi, <a href="https://doi.org/10.1016/j.disc.2005.01.006">On directed-convex polyominoes in a rectangle</a>, Discr. Math., 298 (2005), 62-78.

%H Elena Barcucci, Antonio Bernini, and Renzo Pinzani, <a href="http://ceur-ws.org/Vol-2113/paper7.pdf">Exhaustive generation of positive lattice paths</a>, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018), Vol. 2113.

%H Jean-Luc Baril, David Bevan, and Sergey Kirgizov, <a href="https://arxiv.org/abs/1906.11870">Bijections between directed animals, multisets and Grand-Dyck paths</a>, arXiv:1906.11870 [math.CO], 2019.

%H Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, <a href="https://arxiv.org/abs/2404.05672">Enumerating runs, valleys, and peaks in Catalan words</a>, arXiv:2404.05672 [math.CO], 2024. See p. 5.

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, 9 (2006), Article 06.2.4.

%H Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry1/barry411.html">The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths</a>, J. Int. Seq., 22 (2019), Article 19.1.3.

%H Paul Barry, <a href="https://arxiv.org/abs/1912.01124">A Note on Riordan Arrays with Catalan Halves</a>, arXiv:1912.01124 [math.CO], 2019.

%H Antonio Bernini, Filippo Disanto, Renzo Pinzani, and Simone Rinaldi, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Rinaldi/rinaldi5.html">Permutations defining convex permutominoes</a>, J. Int. Seq. 10 (2007), #07.9.7.

%H Ciprian Borcea and Ileana Streinu, <a href="https://arxiv.org/abs/math/0207126">On the number of embeddings of minimally rigid graphs</a>, arXiv:math/0207126 [math.MG], 2002.

%H Mireille Bousquet-Mélou, <a href="https://doi.org/10.1016/S0012-365X(97)00109-X">New enumerative results on two-dimensional directed animals</a>, Discr. Math., 180 (1998), 73-106. See Eq. (1).

%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://www.labri.fr/Perso/~bousquet/Articles/Klarner/article.ps.gz">Lattice animals and heaps of dimers</a>.

%H Jean-Paul Bultel and Samuele Giraudo, <a href="https://arxiv.org/abs/1406.6903">Combinatorial Hopf algebras from PROs</a>, arXiv:1406.6903 [math.CO], 2014. <a href="https://doi.org/10.1007/s10801-016-0677-7">[DOI]</a>

%H Libor Caha and Daniel Nagaj, <a href="https://arxiv.org/abs/1805.07168">The pair-flip model: a very entangled translationally invariant spin chain</a>, arXiv:1805.07168 [quant-ph], 2018.

%H David Callan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Callan/callan301.html">A Combinatorial Interpretation for a Super-Catalan Recurrence</a>, Journal of Integer Sequences, 8 (2005), Article 05.1.8.

%H Peter J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs., 3 (2000), #00.1.5.

%H Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, <a href="https://arxiv.org/abs/1410.1249">Mutation effects in ordered trees</a>, arXiv:1410.1249 [math.CO], 2014.

%H Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Davenport/dav3.html">The Boundary of Ordered Trees</a>, Journal of Integer Sequences, 18 (2015), Article 15.5.8.

%H Nachum Dershowitz, <a href="https://arxiv.org/abs/1608.08740">1700 Forests</a>, arXiv:1608.08740 [cs.DM], 2016.

%H Leonard E. Dickson, <a href="https://doi.org/10.2307/1967509">On the Inscription of Regular Polygons</a>, Annals of Mathematics, Vol. 9, No. 1/6 (1894 - 1895), pp. 73-84.

%H Leonard E. Dickson, <a href="https://doi.org/10.2307/2968251">Problem 44</a>, The American Mathematical Monthly, Vol. 2, No. 7/8 (Jul. - Aug., 1895), pp. 229-230.

%H G. Dresden and Y. Li, <a href="https://arxiv.org/abs/2210.04322">Periodic Weighted Sums of Binomial Coefficients</a>, arXiv:2210.04322 [math.NT], 2022.

%H Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, <a href="https://arxiv.org/abs/2310.06288">Catalan-Spitzer permutations</a>, arXiv:2310.06288 [math.CO], 2023. See p. 20.

%H Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez/florez4.html">Further Results on Paths in an n-Dimensional Cubic Lattice</a>, Journal of Integer Sequences, 21 (2018), Article 18.1.2.

%H Shishuo Fu and Yaling Wang, <a href="https://arxiv.org/abs/1908.03912">Bijective recurrences concerning two Schröder triangles</a>, arXiv:1908.03912 [math.CO], 2019.

%H Juan B. Gil, Emma G. Hoover, and Jessica A. Shearer, <a href="https://arxiv.org/abs/2403.04575">Bijections between colored compositions, Dyck paths, and polygon partitions</a>, arXiv:2403.04575 [math.CO], 2024. See p. 4.

%H N. Gromov and P. Vieira, <a href="https://arxiv.org/abs/1205.5288">Tailoring Three-Point Functions and Integrability IV. Theta-morphism</a>, arXiv:1205.5288 [hep-th], 2012. - From _N. J. A. Sloane_, Oct 23 2012

%H R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, 3 (2000), Article #00.1.6.

%H Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>, 2011. [Cached copy]

%H Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=145">Encyclopedia of Combinatorial Structures 145</a>.

%H A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, <a href="http://www.acta.sapientia.ro/acta-info/C4-2/info42-7.pdf">Parallel enumeration of degree sequences of simple graphs</a>, Acta Univ. Sapientiae, Informatica, 4(2) (2012) 260-288.

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>.

%H Christian Krattenthaler and Daniel Yaqubi, <a href="https://arxiv.org/abs/1802.05990">Some determinants of path generating functions, II</a>, Adv. Appl. Math. 101 (2018), 232-265.

%H Dmitry Kruchinin, <a href="https://arxiv.org/abs/1109.1683">Superposition's properties of logarithmic generating functions</a>, arXiv:1109.1683 [math.CO], 2011-2015.

%H Markus Kuba and Alois Panholzer, <a href="http://ajc.maths.uq.edu.au/pdf/74/ajc_v74_p216.pdf">Stirling permutations containing a single pattern of length three</a>, Australasian Journal of Combinatorics 74(2) (2019), 216-239.

%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., 3 (2000), #00.2.4.

%H J. W. Layman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.

%H H. Li and T. MacHenry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/MacHenry/machenry7.html">Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences</a>, J. Int. Seq. 16 (2013) #13.3.5, example 40.

%H Elżbieta Liszewska and Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.

%H T. Mansour and M. Shattuck, <a href="https://doi.org/10.1007/s12044-014-0166-7">A statistic on n-color compositions and related sequences</a>, Proc. Indian Acad. Sci. (Math. Sci.) 124(2) (2014), pp. 127-140.

%H M. D. McIlroy, <a href="/A001700/a001700.pdf">Letter to N. J. A. Sloane (no date)</a>.

%H Donatella Merlini and Massimo Nocentini, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Merlini/merlini5.html">Algebraic Generating Functions for Languages Avoiding Riordan Patterns</a>, Journal of Integer Sequences, 21 (2018), Article 18.1.3.

%H Hanna Mularczyk, <a href="https://arxiv.org/abs/1908.04025">Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations</a>, arXiv:1908.04025 [math.CO], 2019.

%H M. Munar, S. Massanet, and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, Volume 621, 2023, 708-728.

%H A. Nkwanta, <a href="https://doi.org/10.1016/j.jspi.2010.01.027">Riordan matrices and higher-dimensional lattice walks</a>, J. Stat. Plann. Infer. 140 (2010), 2321-2334.

%H Asamoah Nkwanta and Earl R. Barnes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Nkwanta/nkwanta2.html">Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind</a>, Journal of Integer Sequences, 15 (2012), Article 12.3.3. - From _N. J. A. Sloane_, Sep 16 2012

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., 4 (2001), #01.2.1.

%H John Riordan, <a href="/A002720/a002720_3.pdf">Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences</a>. Note that the sequences are identified by their N-numbers, not their A-numbers.

%H Louis Shapiro, <a href="http://www.jstor.org/stable/2589028">Problem 10753</a> Amer. Math. Monthly, 106(8) (1999), p. 777.

%H Louis Shapiro et al., <a href="http://www.jstor.org/stable/2695569">Leaves of Ordered Trees: 10753</a>, Amer. Math. Monthly, 108(9) (Nov., 2001), 873-874.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">Binomial Coefficient</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddGraph.html">Odd Graph</a>.

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%F a(n-1) = binomial(2*n, n)/2 = (2*n)!/(2*n!*n!).

%F D-finite with recurrence: a(0) = 1, a(n) = 2*(2*n+1)*a(n-1)/(n+1) for n > 0.

%F G.f.: (1/sqrt(1 - 4*x) - 1)/(2*x).

%F L.g.f.: log((1 - sqrt(1 - 4*x))/(2*x)) = Sum_{n >= 0} a(n)*x^(n+1)/(n+1). - _Vladimir Kruchinin_, Aug 10 2010

%F G.f.: 2F1([1, 3/2]; [2]; 4*x). - _Paul Barry_, Jan 23 2009

%F G.f.: 1/(1 - 2*x - x/(1 - x/(1 - x/(1 - x/(1 - ... (continued fraction). - _Paul Barry_, May 06 2009

%F G.f.: c(x)^2/(1 - x*c(x)^2), c(x) the g.f. of A000108. - _Paul Barry_, Sep 07 2009

%F O.g.f.: c(x)/sqrt(1 - 4*x) = (2 - c(x))/(1 - 4*x), with c(x) the o.g.f. of A000108. Added second formula. - _Wolfdieter Lang_, Sep 02 2012

%F Convolution of A000108 (Catalan) and A000984 (central binomial): Sum_{k=0..n} C(k)*binomial(2*(n-k), n-k), C(k) Catalan. - _Wolfdieter Lang_, Dec 11 1999

%F a(n) = Sum_{k=0..n} C(n+k, k). - _Benoit Cloitre_, Aug 20 2002

%F a(n) = Sum_{k=0..n} C(n, k)*C(n+1, k+1). - _Benoit Cloitre_, Oct 19 2002

%F a(n) = Sum_{k = 0..n+1} binomial(2*n+2, k)*cos((n - k + 1)*Pi). - _Paul Barry_, Nov 02 2004

%F a(n) = 4^n*binomial(n+1/2, n)/(n+1). - _Paul Barry_, May 10 2005

%F E.g.f.: Sum_{n >= 0} a(n)*x^(2*n + 1)/(2*n + 1)! = BesselI(1, 2*x). - _Michael Somos_, Jun 22 2005

%F E.g.f. in Maple notation: exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). Integral representation as n-th moment of a positive function on [0, 4]: a(n) = Integral_{x = 0..4} x^n * (x/(4 - x))^(1/2)/(2*Pi) dx, n >= 0. This representation is unique. - _Karol A. Penson_, Oct 11 2001

%F Narayana transform of [1, 2, 3, ...]. Let M = the Narayana triangle of A001263 as an infinite lower triangular matrix and V = the Vector [1, 2, 3, ...]. Then A001700 = M * V. - _Gary W. Adamson_, Apr 25 2006

%F a(n) = A122366(n,n). - _Reinhard Zumkeller_, Aug 30 2006

%F a(n) = C(2*n, n) + C(2*n, n-1) = A000984(n) + A001791(n). - _Zerinvary Lajos_, Jan 23 2007

%F a(n-1) = (n+1)*(n+2)*...*(2*n-1)/(n-1)! (product of n-1 consecutive integers, divided by (n-1)!). - _Jonathan Vos Post_, Apr 09 2007; [Corrected and shortened by _Giovanni Ciriani_, Mar 26 2019]

%F a(n-1) = (2*n - 1)!/(n!*(n - 1)!). - _William A. Tedeschi_, Feb 27 2008

%F a(n) = (2*n + 1)*A000108(n). - _Paul Barry_, Aug 21 2007

%F Binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double binomial transform of A001405. - _Gary W. Adamson_, Sep 01 2007

%F Row sums of triangle A132813. - _Gary W. Adamson_, Sep 01 2007

%F Row sums of triangle A134285. - _Gary W. Adamson_, Nov 19 2007

%F a(n) = 2*A000984(n) - A000108(n), that is, a(n) = 2*C(2*n, n) - n-th Catalan number. - _Joseph Abate_, Jun 11 2010

%F Conjectured: 4^n GaussHypergeometric(1/2,-n; 2; 1) -- Solution for the path which stays in the first and second quadrant. - _Benjamin Phillabaum_, Feb 20 2011

%F a(n)= Sum_{k=0..n} A038231(n,k) * (-1)^k * A000108(k). - _Philippe Deléham_, Nov 27 2009

%F Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i <= j), and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = (-1)^n * charpoly(A,-2). - _Milan Janjic_, Jul 08 2010

%F a(n) is the upper left term of M^(n+1), where M is the infinite matrix in which a column of (1,2,3,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:

%F 1, 1, 0, 0, 0, ...

%F 2, 1, 1, 0, 0, ...

%F 3, 1, 1, 1, 0, ...

%F 4, 1, 1, 1, 1, ...

%F ...

%F Alternatively, a(n) is the upper left term of M^n where M is the infinite matrix:

%F 3, 1, 0, 0, 0, ...

%F 1, 1, 1, 0, 0, ...

%F 1, 1, 1, 1, 0, ...

%F 1, 1, 1, 1, 1, ...

%F ...

%F - _Gary W. Adamson_, Jul 14 2011

%F a(n) = (n + 1)*hypergeom([-n, -n], [2], 1). - _Peter Luschny_, Oct 24 2011

%F a(n) = Pochhammer(n+1, n+1)/(n+1)!. - _Peter Luschny_, Nov 07 2011

%F E.g.f.: 1 + 6*x/(U(0) - 6*x); U(k) = k^2 + (4*x + 3)*k + 6*x + 2 - 2*x*(k + 1)*(k + 2)*(2*k + 5)/U(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 18 2011

%F a(n) = 2*A000984(n) - A000108(n). [Abate & Whitt]

%F a(n) = 2^(2*n+1)*binomial(n+1/2, -1/2). - _Peter Luschny_, May 06 2014

%F For n > 1: a(n-1) = A166454(2*n, n), central terms in A166454. - _Reinhard Zumkeller_, Mar 04 2015

%F a(n) = 2*4^n*Gamma(3/2 + n)/(sqrt(Pi)*Gamma(2+n)). - _Peter Luschny_, Dec 14 2015

%F a(n) ~ 2*4^n*(1 - (5/8)/n + (73/128)/n^2 - (575/1024)/n^3 + (18459/32768)/n^4)/sqrt(n*Pi). - _Peter Luschny_, Dec 16 2015

%F a(n) = (-1)^(n)*B(n, n+1, -n-1)/n!, where B(n,a,x) is a generalized Bernoulli polynomial. - _Vladimir Kruchinin_, Apr 06 2016

%F a(n) = Gamma(2 + 2*n)/(n!*Gamma(2 + n)). _Andres Cicuttin_, Apr 06 2016

%F a(n) = (n + (n + 1))!/(Gamma(n)*Gamma(1 + n)*A002378(n)), for n > 0. _Andres Cicuttin_, Apr 07 2016

%F From _Ilya Gutkovskiy_, Jul 04 2016: (Start)

%F Sum_{n >= 0} 1/a(n) = 2*(9 + 2*sqrt(3)*Pi)/27 = A248179.

%F Sum_{n >= 0} (-1)^n/a(n) = 2*(5 + 4*sqrt(5)*arcsinh(1/2))/25 = 2*(5*A145433 - 1).

%F Sum_{n >= 0} (-1)^n*a(n)/n! = BesselI(2,2)*exp(-2) = A229020*A092553. (End)

%F Conjecture: a(n) = Sum_{k=2^n..2^(n+1)-1} A178244(k). - _Mikhail Kurkov_, Feb 20 2021

%F a(n-1) = 1 + (1/n)*Sum_{t=1..n/2} (2*cos((2*t-1)*Pi/(2*n)))^(2*n). - _Greg Dresden_, Oct 11 2022

%F a(n) = Product_{1 <= i <= j <= n} (i + j + 1)/(i + j - 1). Cf. A006013. - _Peter Bala_, Feb 21 2023

%F Sum_{n >= 0} a(n)*x^(n+1)/(n+1) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + ... = the series reversion of exp(-x)*(1 - exp(-x)). - _Peter Bala_, Sep 06 2023

%e There are a(2)=10 ways to put 3 indistinguishable balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012

%e a(2) = 10: Semistandard Young tableaux for partition (3) of 3 (the indeterminates x_i, i = 1, 2, 3 are omitted and only their indices are given): 111, 112, 113, 122, 123, 133, 222, 223, 233, 333. - _Wolfdieter Lang_, Oct 11 2015

%p A001700 := n -> binomial(2*n+1,n+1); seq(A001700(n), n=0..20);

%p A001700List := proc(m) local A, P, n; A := [1]; P := [1];

%p for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);

%p A := [op(A), P[-1]] od; A end: A001700List(27); # _Peter Luschny_, Mar 24 2022

%t Table[ Binomial[2n + 1, n + 1], {n, 0, 23}]

%t CoefficientList[ Series[2/((Sqrt[1 - 4 x] + 1)*Sqrt[1 - 4 x]), {x, 0, 22}], x] (* _Robert G. Wilson v_, Aug 08 2011 *)

%o (Sage) [rising_factorial(n+1,n+1)/factorial(n+1) for n in (0..22)] # _Peter Luschny_, Nov 07 2011

%o (PARI) a(n)=binomial(2*n+1,n+1)

%o (PARI) z='z+O('z^50); Vec((1/sqrt(1-4*z)-1)/(2*z)) \\ _Altug Alkan_, Oct 11 2015

%o (Haskell)

%o a001700 n = a007318 (2*n+1) (n+1) -- _Reinhard Zumkeller_, Oct 25 2013

%o (Magma) [Binomial(2*n, n)/2: n in [1..40]]; // _Vincenzo Librandi_, Nov 10 2014

%o (Python)

%o from __future__ import division

%o A001700_list, b = [], 1

%o for n in range(10**3):

%o A001700_list.append(b)

%o b = b*(4*n+6)//(n+2) # _Chai Wah Wu_, Jan 26 2016

%o (Maxima)

%o B(n,a,x):=coeff(taylor(exp(x*t)*(t/(exp(t)-1))^a,t,0,20),t,n)*n!;

%o makelist((-1)^(n)*B(n,n+1,-n-1)/n!,n,0,10); /* _Vladimir Kruchinin_, Apr 06 2016 */

%o (GAP) List([0..30],n->Binomial(2*n+1,n+1)); # _Muniru A Asiru_, Feb 26 2019

%Y Cf. A000110, A007318, A030662, A046097, A060897-A060900, A049027, A076025, A076026, A060150, A001263, A005773, A001405, A132813, A134285.

%Y Equals A000984(n+1)/2.

%Y a(n) = (2*n+1)*Catalan(n) [A000108] = A035324(n+1, 1) (first column of triangle).

%Y Row sums of triangles A028364, A050166, A039598.

%Y Bisections: a(2*k) = A002458(k), a(2*k+1) = A001448(k+1)/2, k >= 0.

%Y Other versions of the same sequence: A088218, A110556, A138364.

%Y Diagonals 1 and 2 of triangle A100257.

%Y Second row of array A102539.

%Y Column of array A073165.

%Y Row sums of A103371. - _Susanne Wienand_, Oct 22 2011

%Y Cf. A002054: C(2*n+1, n-1). - _Bruno Berselli_, Jan 20 2014

%Y Cf. A005043, A091867, A001792, A001813, A166454.

%K easy,nonn,nice,core

%O 0,2

%A _N. J. A. Sloane_

%E Name corrected by _Paul S. Coombes_, Jan 11 2012

%E Name corrected by _Robert Tanniru_, Feb 01 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 21:51 EDT 2024. Contains 372523 sequences. (Running on oeis4.)