login
a(n) is the number of c-nets with n+1 vertices and 2n+1 edges, n >= 1.
(Formerly M3132 N1270)
3

%I M3132 N1270 #39 Jul 28 2017 09:38:08

%S 0,0,0,3,33,338,3580,39525,452865,5354832,65022840,807560625,

%T 10224817515,131631305718,1719292293940,22743461653913,

%U 304256251541865,4111134671255120,56049154766899216,770325744569310630,10664613057653024586,148625522045319923940

%N a(n) is the number of c-nets with n+1 vertices and 2n+1 edges, n >= 1.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Gheorghe Coserea, <a href="/A001507/b001507.txt">Table of n, a(n) for n = 1..203</a>

%H R. C. Mullin and P. J. Schellenberg, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80007-9">The enumeration of c-nets via triangulations</a>, J. Combin. Theory, 4 (1968), 259-276.

%F a(n) = A290326(n+1,n). - _Sean A. Irvine_, Sep 29 2015

%o (PARI)

%o A290326(n,k) = {

%o if (n < 3 || k < 3, return(0));

%o sum(i=0, k-1, sum(j=0, n-1,

%o (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*

%o (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -

%o 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));

%o };

%o vector(22, n, A290326(n+1,n)) \\ _Gheorghe Coserea_, Jul 28 2017

%Y Cf. A290326.

%K nonn

%O 1,4

%A _N. J. A. Sloane_

%E Corrected and extended by _Sean A. Irvine_, Sep 29 2015

%E Name changed by _Gheorghe Coserea_, Jul 23 2017