login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001375 Relational systems on n nodes.
(Formerly M4589 N1958)
0
8, 2080, 22386176, 11728394650624, 314824619911446167552, 450720219711043642520721817600, 35398008262453198128587489274987385192448, 155682086692129060007763454017522652304844346252853248 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

W. Oberschelp, "Strukturzahlen in endlichen Relationssystemen," in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..8.

W. Oberschelp, Strukturzahlen in endlichen Relationssystemen, in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968. [Annotated scanned copy]

FORMULA

a(n) = Sum_{1*s_1+2*s_2+...=n}(fix A[s_1, s_2, ...]/ (1^s_1*s_1!*2^s_2*s_2!*...)) where fix A[s_1, s_2, ...] = 8^Sum_{i, j>=1} (gcd(i,j)*s_i*s_j). - Sean A. Irvine, Nov 20 2016

CROSSREFS

Sequence in context: A092414 A139298 A004819 * A189308 A017415 A046246

Adjacent sequences:  A001372 A001373 A001374 * A001376 A001377 A001378

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Nov 20 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 14:49 EST 2016. Contains 278781 sequences.