

A000901


Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
(Formerly M4446 N1881)


3



0, 0, 7, 74, 882, 11144, 159652, 2571960, 46406392, 928734944, 20436096048, 490489794464, 12752891909920, 357081983435904, 10712466529388608, 342798976818878336, 11655165558112403328, 419585962575107694080
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


REFERENCES

L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180181.
R. W. Robinson, Counting arrangements of bishops, pp. 198214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..18.
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180181. [Annotated scan of pages 180 and 181 only]
E. Lucas, Théorie des Nombres, GauthierVillars, Paris, 1891, Vol. 1, p. 222.
E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
R. W. Robinson, Counting arrangements of bishops, pp. 198214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
R. G. Wilson, v, Comments on the Larsen paper (no date)


FORMULA

For asymptotics see the Robinson paper.


MAPLE

For Maple program see A000903.


CROSSREFS

Sequence in context: A137141 A275618 A114472 * A295245 A266305 A098118
Adjacent sequences: A000898 A000899 A000900 * A000902 A000903 A000904


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane, Robert G. Wilson v


EXTENSIONS

Corrected and extended by Sean A. Irvine, Aug 23 2011


STATUS

approved



