OFFSET
0,3
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
Labelle, Jacques. "Quelques espèces sur les ensembles de petite cardinalité.", Ann. Sc. Math. Québec 9.1 (1985): 31-58.
G. Pfeiffer, Counting Transitive Relations, preprint 2004.
C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Decoste, G. Labelle, & J. Labelle, Espèces sur les petites cardinalités Tableaux divers, Université du Québec à Montréal (octobre 1988), Unpublished.
Justine Falque, On the enumeration of P-oligomorphic groups, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 25-26.
D. Holt, Enumerating subgroups of the symmetric group, in Computational Group Theory and the Theory of Groups, II, edited by L.-C. Kappe, A. Magidin and R. Morse. AMS Contemporary Mathematics book series, vol. 511, pp. 33-37. [Annotated copy]
Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58. (Annotated scanned copy of preprint)
A. C. Lunn and J. K. Senior, Isomerism and Configuration, J. Physical Chem. 33 (7) 1929, 1027-1079.
A. C. Lunn and J. K. Senior, Isomerism and Configuration, J. Physical Chem. 33 (7) 1929, 1027-1079. [Annotated scan of page 1069 only]
L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, arXiv preprint arXiv:1211.1911 [math.GR], 2012 and J. Int. Seq. 16 (2013) #13.5.8
Götz Pfeiffer, Numbers of subgroups of various families of groups
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Colin D. Reid, Simon M. Smith, Groups acting on trees with Tits' independence property (P), arXiv:2002.11766 [math.GR], 2020.
C. C. Sims, Letter to N. J. A. Sloane (no date)
N. J. A. Sloane, Transforms
Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman, Grokking Group Multiplication with Cosets, arXiv:2312.06581 [cs.LG], 2023. See footnote, p. 25.
G. Xiao, PermGroup
FORMULA
Euler Transform of A005226. Define b(n), c(n), d(n): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=a(k), k>0, d(k)=A005226(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006
PROG
(Magma) n := 5; #SubgroupLattice(Sym(n));
(GAP)
# GAP 4.2
Length(ConjugacyClassesSubgroups(SymmetricGroup(n)));
CROSSREFS
KEYWORD
nonn,hard,more,nice
AUTHOR
EXTENSIONS
a(11) corrected and a(12) added by Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
Extended to a(18) using Derek Holt's data from A000637. - N. J. A. Sloane, Jul 31 2010
STATUS
approved