login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000432 Series-parallel numbers.
(Formerly M4538 N1926)
0
8, 52, 288, 1424, 6648, 29700, 128800, 545600, 2269672, 9303140, 37672216, 150998016, 599988696, 2366216164, 9270987656, 36116062832, 139978757920, 540069059028, 2075217121688, 7944690769952, 30313624200640, 115312027433188, 437420730644304, 1655047867097280, 6247339311097296, 23530440547115428, 88447214709073696, 331832490378209152, 1242766581420901656, 4646714574562484628, 17347357264162110368, 64668460220964604944, 240747014238189337840, 895102104022837748484, 3323982608759454833032, 12329573838525875316560, 45684294664598118867184, 169098457957523787786644 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=3..40.

FORMULA

G.f.: 4(2+S)(1+S)/(1-S)^5, where S = g.f. for A000084. - Sean A. Irvine, Nov 14 2010

MATHEMATICA

n = 38; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[4 (2 + S) (1 + S)/(1 - S)^5 + O[x]^n, x] (* Jean-Fran├žois Alcover, Feb 09 2016 *)

CROSSREFS

Sequence in context: A022732 A256047 A227732 * A153336 A080279 A279283

Adjacent sequences:  A000429 A000430 A000431 * A000433 A000434 A000435

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Nov 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 23 20:19 EDT 2017. Contains 293813 sequences.