login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000432
Series-parallel numbers.
(Formerly M4538 N1926)
0
8, 52, 288, 1424, 6648, 29700, 128800, 545600, 2269672, 9303140, 37672216, 150998016, 599988696, 2366216164, 9270987656, 36116062832, 139978757920, 540069059028, 2075217121688, 7944690769952, 30313624200640, 115312027433188, 437420730644304, 1655047867097280, 6247339311097296, 23530440547115428, 88447214709073696, 331832490378209152, 1242766581420901656, 4646714574562484628, 17347357264162110368, 64668460220964604944, 240747014238189337840, 895102104022837748484, 3323982608759454833032, 12329573838525875316560, 45684294664598118867184, 169098457957523787786644
OFFSET
3,1
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 142.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: 4(2+S)(1+S)/(1-S)^5, where S = g.f. for A000084. - Sean A. Irvine, Nov 14 2010
MATHEMATICA
n = 38; s = 1/(1 - x) + O[x]^(n + 1); Do[s = s/(1 - x^k)^Coefficient[s, x^k] + O[x]^(n + 1), {k, 2, n}] ; S = s - 1; CoefficientList[4 (2 + S) (1 + S)/(1 - S)^5 + O[x]^n, x] (* Jean-François Alcover, Feb 09 2016 *)
CROSSREFS
Sequence in context: A022732 A256047 A227732 * A153336 A080279 A279283
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved