Generalized Binomial Coefficients
Our goal is to define a triangle of binomial coefficients
where the swinging factorial is always the middle
coefficient, and not only in the case when n is even .
To this end we define the generalized binomial coefficient
for integer
,
as
-
if
or
, and otherwise
-

In the sequel we will look only at the case
. For this case we will
introduce a more persuasive notation and a different enumeration. We set
-

This gives the following symmetric representation
-
![{\displaystyle {\binom {n}{k}}_{2}={\frac {n!}{\Omega _{n-k}!\ \Omega _{n+k}!}}\ ,\quad {\text{where}}\ \Omega _{x}:={\frac {x-\left[{x}\ {\text{odd}}\right]}{2}}\ .}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/56af4ffdbc821f5edc49037d1d438a41c3cf2303)
We see that the central term of this generalization of the binomial
coefficients is the swinging factorial. This means
-

We see directly that
-

Also the symmetry relation is clear
-

If we set
and
,
then the generalized binomial coefficients can be computed for
and
by the recurrence
-
![{\displaystyle {\binom {n}{k}}_{2}={\binom {n-1}{k-1}}_{2}+\left[{n-k}\ {\text{odd}}\right]{\binom {n-1}{k}}_{2}+{\binom {n-1}{k+1}}_{2}\ .}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/d0d4ff3a0c7b9448bbd93bf68d2ca2755fb8a289)
To show this we introduce the abbreviation
-

Now the recurrence equation can be written
-
![{\displaystyle {\frac {n!}{s_{n,k}}}={\frac {(n-1)!}{s_{n-1,k-1}}}+\left[{n-k}\ {\text{odd}}\right]{\frac {(n-1)!}{s_{n-1,k}}}+{\frac {(n-1)!}{s_{n-1,k+1}}}\ .}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/6c7e7a6a2291e6fc39b7f7792f0601a5b0311b72)
If
and
this is equivalent to
-
![{\displaystyle {\frac {n!}{\left(n-1\right)!}}={\frac {s_{n,k}}{s_{n-1,k-1}}}+\left[{n-k}\ {\text{odd}}\right]{\frac {s_{n,k}}{s_{n-1,k}}}+{\frac {s_{n,k}}{s_{n-1,k+1}}}\ .}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/008ad2920df778cd683a22e8486319157ab7761d)
The left hand side of the equation is
, and the right hand side also, because
-
![{\displaystyle {\frac {s_{n,k}}{s_{n-1,k-1}}}={\frac {n}{2}}+{\frac {k}{2}}-{\frac {1}{2}}\left[{n-k}\ {\text{odd}}\right]\ ,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/5582bae5a9d61a0fa04ac9d182a627cdd22d1d59)
-
![{\displaystyle \left[{n-k}\ {\text{odd}}\right]{\frac {s_{n,k}}{s_{n-1,k}}}=\left[{n-k}\ {\text{odd}}\right]\ ,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/20dbfd42b528729cbf0b68639a6af82ad01695e2)
-
![{\displaystyle {\frac {s_{n,k}}{s_{n-1,k+1}}}={\frac {n}{2}}-{\frac {k}{2}}-{\frac {1}{2}}\left[{n-k}\ {\text{odd}}\right].\quad \diamond }](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/7afc51dbafe72038ac4558c01203b9a815b58a9f)
Looking at table 1 below we see the classical binomial triangle embedded:
the pictorial representation of Pascal's triangle
originates from
by deleting those entries, where
and
have a different parity.
On formal ground we have
-

Appendix
Tabel 1.
n \ k |
-6 |
-5 |
-4 |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
1 |
1 |
|
|
|
|
|
2 |
|
|
|
|
1 |
2 |
2 |
2 |
1 |
|
|
|
|
3 |
|
|
|
1 |
3 |
3 |
6 |
3 |
3 |
1 |
|
|
|
4 |
|
|
1 |
4 |
4 |
12 |
6 |
12 |
4 |
4 |
1 |
|
|
5 |
|
1 |
5 |
5 |
20 |
10 |
30 |
10 |
20 |
5 |
5 |
1 |
|
6 |
1 |
6 |
6 |
30 |
15 |
60 |
20 |
60 |
15 |
30 |
6 |
6 |
1 |
Table 2.
n \ k |
-6 |
-5 |
-4 |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
1 |
1 |
|
|
|
|
|
2 |
|
|
|
|
2 |
1 |
1 |
1 |
2 |
|
|
|
|
3 |
|
|
|
6 |
2 |
2 |
1 |
2 |
2 |
6 |
|
|
|
4 |
|
|
24 |
6 |
6 |
2 |
4 |
2 |
6 |
6 |
24 |
|
|
5 |
|
120 |
24 |
24 |
6 |
12 |
4 |
12 |
6 |
24 |
24 |
120 |
|
6 |
720 |
120 |
120 |
24 |
48 |
12 |
36 |
12 |
48 |
24 |
120 |
120 |
720 |
Sequences
OEIS
A162246 |
|
A056040 |
 |
A098361 |
 |
A180274 |
 |
A180064 |
|
Maple
C := proc(m,n,k)
if k < 0 or k > m*n then 0 else
n!/(floor(k/m)!*(n-ceil(k/m))!) fi end:
C2 := proc(n,k) C(2,n,n+k) end;
Omega := proc(n) (n-(n mod 2))/2 end:
C2o := proc(n,k) n!/(Omega(n-k)!*Omega(n+k)!) end: