This site is supported by donations to The OEIS Foundation.

# Template:End/doc

This documentation subpage contains instructions, categories, or other information for Template:End. [<Edit> Template:End]

[⧼Purge⧽ Template:End/doc]

The {{begin}} and {{end}} mathematical formatting templates are used to simulate LaTeX environments.

## Usage

{{begin|''environment''|''format''}}
first line {{\\}}
second line {{\\}}
... {{\\}}
second last line {{\\}}
last line
{{end|''environment''|''format''}}


where environment is from

• align: calls {{align|end|format}},
• cases: will calls {{cases|end|format}},
• gather: will call (NOT YET IMPLEMENTED!) {{gather|begin|format}},
• (...);

and where format is from

• htm: HTML+CSS (default);
• tex: LaTeX.

## Examples

### Decimal point alignment

The code

{{indent}}{{math|
{{begin|align}}
123{{&.}}45678 {{\\}}
1{{&.}}2345678 {{\\}}
123456{{&.}}78
{{end|align}}
|&&}}


yields the display style HTML+CSS

 123 0.45678 1 0.234568 123456 0.78

The code

{{indent}}{{math|
{{begin|align|tex}}
123{{&.|tex}}45678 {{\\|tex}}
1{{&.|tex}}2345678 {{\\|tex}}
123456{{&.|tex}}78
{{end|align|tex}}
|}}  yields the display style LaTeX {\displaystyle {\begin{array}{l}\displaystyle {\begin{aligned}123&.45678\\1&.2345678\\123456&.78\end{aligned}}\end{array}}} ### Cases The code: The iterated function of the [[3x+1 problem|{{mathfont|3{{sp|1}}''x'' + 1}} problem]] is : {{math|''f''{{sp|2}}(''n'') {{=}} {{begin|cases}} ''n''{{sp|1}}{{op|/}}2{{&}}{{sp|quad}}if ''n'' {{rel|equiv}} 0 {{pmod|2}}, {{\\}} 3{{sp|1}}''n'' + 1{{&}}{{sp|quad}}if ''n'' {{rel|equiv}} 1 {{pmod|2}}. {{end|cases}} |tex = f(n) = \begin{cases} n / 2 & \text{if } n \equiv 0 \pmod{2}, \\ 3n + 1 & \text{if } n \equiv 1 \pmod{2}. \end{cases} |&&}}  yields the HTML+CSS (with the && option): The iterated function of the 3 x + 1 problem is f (n) =  ⎧ ⎨ ⎩  n / 2 if n ≡ 0 (mod 2), 3 n + 1 if n ≡ 1 (mod 2). or yields the LaTeX (with the  option):

The iterated function of the 3 x + 1 problem is

${\displaystyle {\begin{array}{l}\displaystyle {f(n)={\begin{cases}n/2&{\text{if }}n\equiv 0{\pmod {2}},\\3n+1&{\text{if }}n\equiv 1{\pmod {2}}.\end{cases}}}\end{array}}}$