This site is supported by donations to The OEIS Foundation.

Chebyshev polynomials

From OeisWiki
(Redirected from Chebyshev polynomials of the first kind)
Jump to: navigation, search


This article page is a stub, please help by expanding it.


The Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are sequences of polynomials (of orthogonal polynomials) which are related to de Moivre's formula and which are easily defined recursively, like Fibonacci or Lucas numbers. One usually distinguishes between Chebyshev polynomials of the first kind, which are denoted , and Chebyshev polynomials of the second kind, which are denoted . The letter T is used because of the alternative transliterations of the name Chebyshev as Tchebychev (French) or Tschebyschow (German.)

Chebyshev polynomials of the first kind

The Chebyshev polynomials of the first kind[2] are defined by the recurrence relation

The first few Chebyshev polynomials of the first kind are

A closed-form formula (would be a Binet formula of the first type, but for the factor ) (Cf. Lucas numbers#Binet's closed-form formula) giving the Chebyshev polynomials of the first kind is

where and are the roots of the quadratic polynomial in terms of

The ordinary generating function for is

The exponential generating function for is

Triangle of coefficients of Chebyshev polynomials of the first kind

Chebyshev polynomials of the first kind
0                        
1                        
2                      
3                    
4                    
5                    
6                  
7                  
8                
9                
10              
11              
12            


The triangle of coefficients of Chebyshev polynomials of the first kind gives the infinite sequence of finite sequences

{{1}, {1}, {-1, 2}, {-3, 4}, {1, -8, 8}, {5, -20, 16}, {-1, 18, -48, 32}, {-7, 56, -112, 64}, {1, -32, 160, -256, 128}, {9, -120, 432, -576, 256}, {-1, 50, -400, 1120, -1280, 512}, {-11, 220, -1232, 2816, -2816, 1024}, {1, -72, 840, -3584, 6912, -6144, 2048}, {13, -364, 2912, -9984, 16640, -13312, 4096}, ...}

Triangle of coefficients of Chebyshev polynomials of the first kind . (Cf. A008310)

{1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096, ...}

Rows of coefficients of Chebyshev polynomials of the first kind

Row sums of coefficients of Chebyshev polynomials of the first kind

Columns of coefficients of Chebyshev polynomials of the first kind

Columns of absolute values of coefficients of Chebyshev polynomials of the first kind

Compare with the (2,1)-Pascal triangle columns.

Rising diagonals of coefficients of Chebyshev polynomials of the first kind

(...)

Rising diagonal sums of coefficients of Chebyshev polynomials of the first kind

Except for the 0 th rising diagonal, which sums to 1, the rising diagonal sums are all 0. Thus the j th rising diagonal sums to .

Falling diagonals of coefficients of Chebyshev polynomials of the first kind

(...)

Chebyshev polynomials of the second kind

The Chebyshev polynomials of the second kind[3] are defined by the recurrence relation

The first few Chebyshev polynomials of the second kind are

A closed-form formula (would be a Binet formula of the second type, except that the exponents are instead of ) (Cf. Fibonacci numbers#Binet's closed-form formula) giving the Chebyshev polynomials of the second kind is

where and are the roots of the quadratic polynomial in terms of

The ordinary generating function for is

The exponential generating function for is

Triangle of coefficients of Chebyshev polynomials of the second kind

Chebyshev polynomials of the second kind
0                        
1                        
2                      
3                    
4                    
5                    
6                  
7                  
8                
9                
10              
11              
12            


The triangle of coefficients of Chebyshev polynomials gives the infinite sequence of finite sequences

{{1}, {2}, {-1, 4}, {-4, 8}, {1, -12, 16}, {6, -32, 32}, {-1, 24, -80, 64}, {-8, 80, -192, 128}, {1, -40, 240, -448, 256}, {10, -160, 672, -1024, 512}, {-1, 60, -560, 1792, -2304, 1024}, {-12, 280, -1792, 4608, -5120, 2048}, {1, -84, 1120, -5376, 11520, -11264, 4096}, ...}

Triangle of coefficients of Chebyshev polynomials . (Cf. A008312)

{1, 2, -1, 4, -4, 8, 1, -12, 16, 6, -32, 32, -1, 24, -80, 64, -8, 80, -192, 128, 1, -40, 240, -448, 256, 10, -160, 672, -1024, 512, -1, 60, -560, 1792, -2304, 1024, -12, 280, -1792, 4608, -5120, 2048, 1, -84, 1120, -5376, 11520, -11264, 4096, ...}

Rows of coefficients of Chebyshev polynomials of the second kind

Row sums of coefficients of Chebyshev polynomials of the second kind

Columns of coefficients of Chebyshev polynomials of the second kind

Columns of absolute values of coefficients of Chebyshev polynomials of the second kind

Compare with the (1,1)-Pascal triangle columns.

Rising diagonals of coefficients of Chebyshev polynomials of the second kind

(...)

Rising diagonal sums of coefficients of Chebyshev polynomials of the second kind

The rising diagonal sums are alternatively 1 and 0.

Falling diagonals of coefficients of Chebyshev polynomials of the second kind

(...)

See also

Notes

  1. Chebyshev polynomials were first presented in: P. L. Chebyshev (1854) "Théorie des mécanismes connus sous le nom de parallélogrammes," Mémoires des Savants étrangers présentés à l’Académie de Saint-Pétersbourg, vol. 7, pages 539–586.
  2. Weisstein, Eric W., Chebyshev Polynomial of the First Kind, from MathWorld—A Wolfram Web Resource.
  3. Weisstein, Eric W., Chebyshev Polynomial of the Second Kind, from MathWorld—A Wolfram Web Resource.