This site is supported by donations to The OEIS Foundation.

# 196

Please do not rely on any information it contains.

196 is the square of 14, and the smallest number not known for sure to lead to a palindrome in the reverse and add process in base 10.

## Membership in core sequences

 Even numbers ..., 190, 192, 194, 196, 198, 200, 202, ... A005843 Composite numbers ..., 192, 194, 195, 196, 198, 200, 201, ... A002808 Perfect squares ..., 121, 144, 169, 196, 225, 256, 289, ... A000290

## Sequences pertaining to 196

 Multiples of 196 196, 392, 588, 784, 980, 1176, 1372, 1568, 1764, 1960, ... 196-gonal numbers 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, ... ${\displaystyle 3x+1}$ sequence starting at 57 57, 172, 86, 43, 130, 65, 196, 98, 49, 148, 74, 37, 112, ... A008877 Reverse and Add! sequence starting with 196 196, 887, 1675, 7436, 13783, 52514, 94039, 187088, ... A006960

## Partitions of 196

There are 135 partitions of 14.

## Roots and powers of 196

In the table below, irrational numbers are given truncated to eight decimal places.

 ${\displaystyle {\sqrt {196}}}$ 14.00000000 1962 38416 ${\displaystyle {\sqrt[{3}]{196}}}$ 5.80878573 1963 7529536 ${\displaystyle {\sqrt[{4}]{196}}}$ 3.74165738 A010471 1964 1475789056 ${\displaystyle {\sqrt[{5}]{196}}}$ 2.87376475 1965 289254654976 ${\displaystyle {\sqrt[{6}]{196}}}$ 2.41014226 A010586 1966 56693912375296 ${\displaystyle {\sqrt[{7}]{196}}}$ 2.12551979 1967 11112006825558016 ${\displaystyle {\sqrt[{8}]{196}}}$ 1.93433642 A011011 1968 2177953337809371136 ${\displaystyle {\sqrt[{9}]{196}}}$ 1.79760852 1969 426878854210636742656 ${\displaystyle {\sqrt[{10}]{196}}}$ 1.69521820 A011099 19610 83668255425284801560576

## Logarithms and 196th powers

In the OEIS specifically and mathematics in general, ${\displaystyle \log x}$ refers to the natural logarithm of ${\displaystyle x}$, whereas all other bases are specified with a subscript.

As above, irrational numbers in the following table are truncated to eight decimal places.

TABLE GOES HERE

(See A010802 for the fourteenth powers of integers).

TABLE GOES HERE

## Factorization of some small integers in a quadratic integer ring with discriminant −196, 196

Since 196 is a perfect square, the of the [FINISH WRITING]

REMARKS GO HERE

TABLE GOES HERE

## Representation of 196 in various bases

 Base 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Representation 11000100 21021 3010 1241 524 400 304 237 196 169 144 121 100 D1 C4 B9 AG A6 9G

 ${\displaystyle -1}$ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1729